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Gaussian Process-Mixture Conditional
Heteroscedasticity

Emmanouil A. Platanios and Sotirios P. Chatzis

Abstract—Generalized autoregressive conditional heteroscedasticity (GARCH) models have long been considered as one of the
most successful families of approaches for volatility modeling in financial return series. In this paper, we propose an alternative
approach based on methodologies widely used in the field of statistical machine learning. Specifically, we propose a novel
nonparametric Bayesian mixture of Gaussian process regression models, each component of which models the noise variance
process that contaminates the observed data as a separate latent Gaussian process driven by the observed data. This way, we
essentially obtain a Gaussian process-mixture conditional heteroscedasticity (GPMCH) model for volatility modeling in financial return
series. We impose a nonparametric prior with power-law nature over the distribution of the model mixture components, namely the
Pitman-Yor process prior, to allow for better capturing modeled data distributions with heavy tails and skewness. Finally, we provide a
copula-based approach for obtaining a predictive posterior for the covariances over the asset returns modeled by means of a
postulated GPMCH model. We evaluate the efficacy of our approach in a number of benchmark scenarios, and compare its
performance to state-of-the-art methodologies.

Index Terms—Gaussian process, Pitman-Yor process, mixture model, conditional heteroscedasticity, copula, volatility modeling

1 INTRODUCTION

STATISTICAL modeling of asset values in financial mar-
kets requires taking into account the tendency of assets

towards asymmetric temporal dependence [1]. Besides, the
data generation processes of the returns of financial market
indexes may be non-linear, non-stationary and/or heavy-
tailed, while the marginal distributions may be asymmet-
ric, leptokurtic and/or show conditional heteroscedasticity.
Hence, there is a need to construct flexible models capable
of incorporating these features. The generalized autore-
gressive conditional heteroscedasticity (GARCH) family of
models has been used to address conditional heteroscedas-
ticity and excess kurtosis (see [2], [3]).

The time-dependent variance in series of returns on
prices, also known as volatility, is of particular interest
in finance, as it impacts the pricing of financial instru-
ments, and it is a key concept in market regulation. GARCH
approaches are commonly employed in modeling financial
return series that exhibit time-varying volatility clustering,
i.e. periods of swings followed by periods of relative calm,
and have been shown to yield excellent performance in
these applications, consistently defining the state-of-the-art
in the field in the last decade. GARCH models represent
the variance by a function of the past squared returns
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and the past variances, which facilitates model estimation
and computation of the prediction errors. They have been
extremely successful in both volatility prediction based on
daily returns, as well as on predictions using intraday infor-
mation (realized volatility), where they offer state-of-the-art
performance.

Gaussian process (GP) models comprise one of the most
popular Bayesian methods in the field of machine learning
for regression, function approximation, and predictive den-
sity estimation [4]. Despite their significant flexibility and
success in many application domains, GPs do also suffer
from several limitations. In particular, GP models are faced
with difficulties when dealing with tasks entailing non-
stationary covariance functions, multi-modal output, or
discontinuities. Several approaches that entail using ensem-
bles of fractional GP models defined on subsets of the input
space have been proposed as a means of resolving these
issues (see [5]–[7]).

In this work, we propose a novel GP-based approach for
volatility modeling in financial time series (return) data.
Our proposed approach provides a viable alternative to
GARCH models, that allows for effectively capturing the
clustering effects in the variability or volatility. It is based
on the introduction of a novel nonparametric Bayesian
mixture model, the component distributions of which con-
stitute GP regression models; the noise variance processes
of the model component GPs are considered as input-
dependent latent variable processes which are also modeled
by imposition of appropriate GP priors. This way, our
novel approach allows for learning both the observation-
dependent nature of asset volatility, as well as the under-
lying volatility clustering mechanism, modeled as a latent
model component switching procedure. In out work, we
focus on volatility prediction based on daily returns. Even
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though realized volatility measures have been proven to
be more accurate, we opt here for working with daily
return series due to the easier access to training data for
our algorithms. However, our method is directly applica-
ble to realized volatility as well, without modifications. We
dub our approach the Gaussian process-mixure conditional
heteroscedasticity (GPMCH) model.

Nonparametric Bayesian modeling techniques, espe-
cially Dirichlet process mixture (DPM) models, have
become very popular in statistics over the last few years,
for performing nonparametric density estimation [8]–[10].
Briefly, a realization of a DPM can be seen as an infi-
nite mixture of distributions with given parametric shape
(e.g., Gaussian). An interesting alternative to the Dirichlet
process prior for nonparametric Bayesian modeling is the
Pitman-Yor process prior [11]. Pitman-Yor processes pro-
duce a large number of sparsely populated clusters and
a small number of highly populated clusters [12]. Indeed,
the Pitman-Yor process prior can be viewed as a general-
ization of the Dirichlet process prior, and reduces to it for
a specific selection of its parameter values. Consequently,
the Pitman-Yor process turns out to be more promising as
a means of modeling complex real-life datasets that usually
comprise a high number of clusters which comprise only
few data points, and a low number of clusters which are
highly frequent, thus dominating the entire population.

Inspired by these advances, the component switching
mechanism of our model is obtained by means of a Pitman-
Yor process prior imposed over the component GP latent
allocation variables of our model. We derive a computation-
ally efficient inference algorithm for our model based on the
variational Bayesian framework, and obtain the predictive
density of our model using an approximation technique. We
examine the efficacy of our approach considering volatility
prediction in a number of financial return series.

Currently, there is an extensive corpus of existing work
on conditionally heteroscedastic (Gaussian) mixture mod-
els put forward in the financial econometrics literature,
which bear some relationship with our proposed approach.
In particular, several authors have proposed mixture pro-
cesses where in each component the conditional variance
is driven by GARCH-type dynamics (e.g., [13]–[16]). Such
approaches have been shown to yield excellent out-of-
sample volatility and density forecasts in a multitude of
scenarios. We shall provide comparisons of our approach
against a popular such method in the experimental section
of our paper.

The remainder of this paper is organized as follows:
In Section 2, we provide a brief presentation of the the-
oretical background of the proposed method. Initially, we
present the Pitman-Yor process and its function as a prior
in nonparametric Bayesian models; further, we provide a
brief summary of Gaussian process regression. In Section 3,
we introduce the proposed Gaussian process-mixture con-
ditional heteroscedasticity (GPMCH) model, and derive
efficient model inference algorithms based on the varia-
tional Bayesian framework. We also propose a copula-based
method for learning the interdependencies between the
returns of multiple assets jointly modeled by means of an
GPMCH model. In Section 4, we conduct the experimental
evaluation of our proposed model, considering a number

of applications dealing with volatility modeling in financial
return series. In the final section, we summarize and discuss
our results.

2 PRELIMINARIES

2.1 The Pitman-Yor Process
Dirichlet process models were first introduced by
Ferguson [17]. A DP is characterized by a base distri-
bution G0 and a positive scalar α, usually referred to as
the innovation parameter, and is denoted as DP(α,G0).
Essentially, a DP is a distribution placed over a distribution.
Let us suppose we randomly draw a sample distribution
G from a DP, and, subsequently, we independently draw
M random variables {�∗

m}M
m=1 from G:

G|α,G0 ∼ DP(α,G0) (1)

�∗
m|G ∼ G, m = 1, . . .M. (2)

Integrating out G, the joint distribution of the variables
{�∗

m}M
m=1 can be shown to exhibit a clustering effect.

Specifically, given the first M − 1 samples of G, {�∗
m}M−1

m=1 ,
it can be shown that a new sample �∗

M is either (a) drawn
from the base distribution G0 with probability α

α+M−1 , or (b)
is selected from the existing draws, according to a multi-
nomial allocation, with probabilities proportional to the
number of the previous draws with the same allocation [18].
Let {�c}C

c=1 be the set of distinct values taken by the vari-
ables {�∗

m}M−1
m=1 . Denoting as νM−1

c the number of values in
{�∗

m}M−1
m=1 that equal to �c, the distribution of �∗

M given
{�∗

m}M−1
m=1 can be shown to be of the form [18]

p
(
�∗

M|{�∗
m}M−1

m=1 , α,G0

)
= α

α + M − 1
G0

+
C∑

c=1

νM−1
c

α + M − 1
δ�c , (3)

where δ�c denotes the distribution concentrated at a sin-
gle point �c. These results illustrate two key properties of
the DP scheme. First, the innovation parameter α plays a
key-role in determining the number of distinct parameter
values. A larger α induces a higher tendency of drawing
new parameters from the base distribution G0; indeed, as
α → ∞ we get G → G0. On the contrary, as α → 0
all {�∗

m}M
m=1 tend to cluster to a single random variable.

Second, the more often a parameter is shared, the more
likely it will be shared in the future.

The Pitman-Yor process (PYP) [11] functions similar to
the Dirichlet process. Let us suppose we randomly draw a
sample distribution G from a PYP, and, subsequently, we
independently draw M random variables {�∗

m}M
m=1 from G:

G|δ, α,G0 ∼ PY(δ, α,G0) (4)

with

�∗
m|G ∼ G, m = 1, . . .M , (5)

where δ ∈ [0, 1) is the discount parameter of the Pitman-
Yor process, α > −δ is its innovation parameter, and G0 the
base distribution. Integrating out G, similar to Eq. (3), we
now yield
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p
(
�∗

M|{�∗
m}M−1

m=1 , δ, α,G0

)
= α + δC
α + M − 1

G0

+
C∑

c=1

νM−1
c − δ

α + M − 1
δ�c . (6)

As we observe, the PYP yields an expression for
p(�∗

M|{�∗
m}M−1

m=1 ,G0) quite similar to that of the DP, also
possessing the rich-gets-richer clustering property, i.e., the
more samples have been assigned to a draw from G0,
the more likely subsequent samples will be assigned to
the same draw. Further, the more we draw from G0, the
more likely a new sample will again be assigned to a new
draw from G0. These two effects together produce a power-
law distribution where many unique�∗

m values are observed,
most of them rarely [11], thus allowing for better modeling
observations with heavy-tailed distributions. In particular,
for δ > 0, the number of unique values scales as O(αMδ),
where M is the total number of draws. Note also that, for
δ = 0, the Pitman-Yor process reduces to the Dirichlet pro-
cess, in which case the number of unique values grows
more slowly at O(αlogM) [12].

A characterization of the (unconditional) distribu-
tion of the random variable G drawn from a PYP,
PY(δ, α,G0), is provided by the stick-breaking construction
of Sethuraman [19]. Consider two infinite collections of
independent random variables v = (vc)

∞
c=1, {�c}∞c=1, where

the vc are drawn from a Beta distribution, and the �c are
independently drawn from the base distribution G0. The
stick-breaking representation of G is then given by [12]

G =
∞∑

c=1

�c(v)δ�c , (7)

where

p(vc) = Beta(1 − δ, α + δc) (8)

�c(v) = vc

c−1∏
j=1

(1 − vj) ∈ [0, 1] (9)

and
∞∑

c=1

�c(v) = 1. (10)

Under the stick-breaking representation of the Pitman-Yor
process, the atoms �c, drawn independently from the base
distribution G0, can be seen as the parameters of the com-
ponent distributions of a mixture model comprising an
unbounded number of component densities, with mixing
proportions �c(v).

2.2 Gaussian Process Models
Let us consider an observation space X . A Gaussian pro-
cess f (x), x ∈ X , is defined as a collection of random variables,
any finite number of which have a joint Gaussian distribu-
tion [20]. A Gaussian process is completely specified by its
mean function and covariance function. We define the mean
function m(x) and the covariance function k(x, x′) of a real
process f (x) as

m(x) = E[f (x)]

k(x, x′) = E[(f (x)− m(x))(f (x′)− m(x′))] (11)

and we will write the Gaussian process as

f (x) ∼ N (m(x), k(x, x)). (12)

Usually, for notational simplicity, and without any loss of
generality, the mean of the process is taken to be zero,
m(x) = 0, although this is not necessary. Concerning
selection of the covariance function, a large variety of ker-
nel functions k(x, x′) might be employed, depending on
the application considered [20]. This way, a postulated
Gaussian process eventually takes the form

f (x) ∼ N (0, k(x, x)). (13)

Let us suppose a set of independent and identically dis-
tributed (i.i.d.) samples D = {(xi, yi)|i = 1, . . . ,N}, with the
d-dimensional variables xi being the observations related
to a modeled phenomenon, and the scalars yi being the
associated target values. The goal of a regression model is,
given a new observation x∗, to predict the corresponding
target value y∗, based on the information contained in the
training set D. The basic notion behind Gaussian process
regression consists in the assumption that the observable
(training) target values y in a considered regression prob-
lem can be expressed as the superposition of a Gaussian
process over the input space X , f (x), and an independent
white Gaussian noise

y = f (x)+ ε, (14)

where f (x) is given by (12), and

ε ∼ N
(

0, σ 2
)
. (15)

Under this regard, the joint normality of the training tar-
get values y = [yi]N

i=1 and some unknown target value y∗,
approximated by the value f∗ of the postulated Gaussian
process evaluated at the observation point x∗, yields [20]

[
y
f∗

]
∼ N

(
0,
[

K(X,X)+ σ 2IN k(x∗)
k(x∗)T k(x∗, x∗)

])
, (16)

where

k(x∗) � [k(x1, x∗), . . . , k(xN, x∗)]T (17)

X = {xi}N
i=1, IN is the N × N identity matrix, and K is

the matrix of the covariances between the N training data
points (design matrix), i.e.

K(X,X) �

⎡
⎢⎢⎢⎣

k(x1, x1) k(x1, x2) . . . k(x1, xN)

k(x2, x1) k(x2, x2) . . . k(x2, xN)
...

...
...

k(xN, x1) k(xN, x2) . . . k(xN, xN)

⎤
⎥⎥⎥⎦ . (18)

Then, from (16), and conditioning on the available train-
ing samples, we can derive the expression of the model
predictive distribution, yielding

p(f∗|x∗,D) = N
(

f∗|μ∗, σ 2
∗
)

(19)

μ∗ = k(x∗)T
(

K(X,X)+ σ 2IN

)−1
y (20)

σ 2
∗ = σ 2 − k(x∗)T

(
K(X,X)+ σ 2IN

)−1

k(x∗)+ k(x∗, x∗). (21)
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Regarding optimization of the hyperparameters of the
employed covariance function (kernel), say θ , and the noise
variance σ 2 of a GP model, this is usually conducted by
type-II maximum likelihood, that is by maximization of the
model marginal likelihood (evidence). Using (16), it is easy
to show that the evidence of the GP regression model yields

logp
(

y|X; θ, σ 2
)
= −N

2
log2π − 1

2
log
∣∣K(X,X)+ σ 2IN

∣∣

−1
2

yT
(

K(X,X)+ σ 2IN

)−1
y. (22)

It is interesting to note that the GP regression model
considers that the noise that contaminates the modeled
output variables does not depend on the observations
themselves, but rather that it constitutes an additive white
noise term with constant variance, which bears no corre-
lation between observations, and no dependence on the
values of the observations. Nevertheless, in many real-
world applications, with financial return series modeling
being a characteristic example, this assumption of constant
noise variance is clearly implausible.

To ameliorate this issue, an heteroscedastic GP regression
approach was proposed in [21], where the noise variance
is considered to be a function of the observed data, similar
to previously proposed heteroscedastic regression approaches
applied to econometrics and statistical finance, e.g., [22],
[23]. A key drawback of the approach of [21] is that
their heteroscedastic regression approach does not allow
for capturing the clustering effects in the variability or
volatility, which is apparent in the vast majority of financial
return series data, and is effectively captured by GARCH-
type models with integrated mixture-model-type clustering
mechanisms (e.g., [13]–[16]). Our approach addresses these
issues under a nonparametric Bayesian mixture modeling
scheme, as discussed next.

3 PROPOSED APPROACH

In this section, we first define the proposed GPMCH model,
considering a generic modeling problem that comprises the
input variables x ∈ R

p, and the output variables y ∈ R
D.

Further, we derive an efficient inference algorithm for our
model under the variational Bayesian inference paradigm,
and we obtain the expression of its predictive density.
Finally, we show how we can obtain a predictive distri-
bution for the covariances between the modeled output
variables {yi}D

i=1, by utilization of the statistical tool of
copulas.

3.1 Model Definition
Let fd(x) be a latent function modeling the dth output vari-
able yd as a function of the model input x. We consider
that the expression of yd as a function of x is not uniquely
described by the latent function fd(x), but fd(x) is only an
instance of the (possibly infinite) set of possible latent func-
tions f c

d (x), c = 1, . . . ,∞. To determine the association
between input samples and latent functions, we impose a
Pitman-Yor process prior over this set of functions. In addi-
tion, we consider that each one of these latent functions
f c
d (x) has a prior distribution of the form of a Gaussian pro-

cess over the whole space of input variables x ∈ R
p. At

this point, we make a further key-assumption: We assume
that the noise variance σ 2 of the postulated GPs is not a
constant, but rather that it varies with the input variables
x ∈ R

p. In other words, we consider the noise variance as a
latent process, different for each model output variable, and
exhibiting a clustering effect, as described by the dynamics
of the postulated PYP mixing prior.

Let us consider a set of input/output observation pairs
{xn,yn}N

n=1, comprising N samples. Let us also introduce
the set of variables {znc}N,∞

n,c=1, with znc = 1 if the func-
tion relating xn to yn is considered to be expressed by the
set {f c

d (x)}D
d=1 of postulated Gaussian processes, znc = 0

otherwise. Then, based on the previous description, we
essentially postulate the following model:

p
(
yn|xn, znc = 1

) =
D∏

d=1

N
(

ynd|f c
d (xn), σ

c
d(xn)

2
)

(23)

p(znc = 1|v) = �c(v) (24)

�c(v) = vc

c−1∏
j=1

(1 − vj) ∈ [0, 1] (25)

with
∞∑

c=1

�c(v) = 1 (26)

p(vc) = Beta (1 − δ, α + δc) (27)

and

p
(
f c

d|X
) = N (f c

d|0,Kc(X,X)
)
, (28)

where ynd is the dth element of yn, we define X � {xn}N
n=1,

Y � {yn}N
n=1, and Z � {znc}N,∞

n,c=1, f c
d is the vector of the

f c
d (xn) ∀n, i.e., f c

d � [f c
d (xn)]N

n=1, and Kc(X,X) is the following
design matrix

Kc(X,X) �

⎡
⎢⎢⎢⎣

kc(x1, x1) kc(x1, x2) . . . kc(x1, xN)

kc(x2, x1) kc(x2, x2) . . . kc(x2, xN)
...

...
...

kc(xN, x1) kc(xN, x2) . . . kc(xN, xN)

⎤
⎥⎥⎥⎦ . (29)

Regarding the latent processes σ c
d(xn)

2, we choose to also
impose a GP prior over them. Specifically, to accommodate
the fact that σ c

d(xn)
2 ≥ 0 (by definition), we postulate

σ c
d(xn)

2 = exp
[
gc

d(xn)
]

(30)

and

p
(
gc

d|X
) = N (gc

d|m̃c
d1,�c(X,X)

)
. (31)

where gc
d is the vector of the gc

d(xn) ∀n, i.e., gc
d � [gc

d(xn)]N
n=1,

and �c(X,X) is a design matrix, similar to Kc(X,X), but with
(possibly) different kernel functions λ(·, ·).

Finally, due to the effect of the innovation parameter α
on the number of effective mixture components, we also
impose a Gamma prior over it:

p(α) = G (α|η1, η2) . (32)

This completes the definition of our proposed GPMCH
model.
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3.2 Inference Algorithm
Inference for nonparametric models can be conducted
under a Bayesian setting, typically by means of variational
Bayes (e.g., [24]), or Monte Carlo techniques (e.g., [25]).
Here, we prefer a variational Bayesian approach, due to
its considerably better scalability in terms of computational
costs, which becomes of major importance when having to
deal with large data corpora [26], [27].

Our variational Bayesian inference algorithm for the
GPMCH model comprises derivation of a family of vari-
ational posterior distributions q(.) which approximate the
true posterior distribution over the infinite sets Z, v =
(vc)

∞
c=1, {f c}∞c=1, and {gc}∞c=1, and the innovation parameter α.

Apparently, Bayesian inference is not tractable under this
setting, since we are dealing with an infinite number of
parameters.

For this reason, we employ a common strategy in the lit-
erature of Bayesian nonparametrics, formulated on the
basis of a truncated stick-breaking representation of the
PYP [24]. That is, we fix a value C and we let the varia-
tional posterior over the vi have the property q(vC = 1) = 1.
In other words, we set �c(v) equal to zero for c > C. Note
that, under this setting, the treated GPMCH model involves
a full PYP prior; truncation is not imposed on the model
itself, but only on the variational distribution to allow for
tractable inference. Hence, the truncation level C is a vari-
ational parameter which can be freely set, and not part of
the prior model specification.

Let W � {v, α,Z, {f c}C
c=1, {gc}C

c=1} be the set of all the
parameters of the GPMCH model over which a prior
distribution has been imposed, and � be the set of the
hyperparameters of the model priors and kernel func-
tions. Variational Bayesian inference introduces an arbi-
trary distribution q(W) to approximate the actual posterior
p(W|�,X,Y) which is computationally intractable, yield-
ing [28]

logp(X,Y) = L(q)+ KL(q||p), (33)

where

L(q) =
∫

dWq(W)log
p(X,Y,W|�)

q(W)
(34)

and KL(q||p) stands for the Kullback-Leibler (KL) diver-
gence between the (approximate) variational posterior,
q(W), and the actual posterior, p(W|�,X,Y). Since KL
divergence is nonnegative, L(q) forms a strict lower bound
of the log evidence, and would become exact if q(W) =
p(W|�,X,Y). Hence, by maximizing this lower bound L(q)
(variational free energy) so that it becomes as tight as pos-
sible, not only do we minimize the KL-divergence between
the true and the variational posterior, but we also implicitly
integrate out the unknowns W.

Due to the considered conjugate exponential prior con-
figuration of the GPMCH model, the variational posterior
q(W) is expected to take the same functional form as the
prior, p(W) [29]:

q(W) = q(Z)q(α)

(C−1∏
c=1

q(vc)

) C∏
c=1

D∏
d=1

q
(
f c

d
)

q
(
gc

d
)

(35)

with

q(Z) =
N∏

n=1

C∏
c=1

q(znc = 1). (36)

Then, the variational free energy of the model reads (ignor-
ing constant terms)

L(q) =
C∑

c=1

D∑
d=1

∫
df c

dq
(
f c

d
)

log
p
(
f c

d|0,Kc(X,X)
)

q
(
f c

d
)

+
C∑

c=1

D∑
d=1

∫
dgc

dq
(
gc

d
)

log
p
(
gc

d|m̃c
d1,�c(X,X)

)

q
(
gc

d

)

+
∫

dαq(α)
{

log
p (α|η1, η2)

q(α)

+
C−1∑
c=1

∫
dvcq(vc)log

p (vc|α)
q(vc)

}

+
C∑

c=1

N∑
n=1

q(znc = 1)
{∫

dvq(v)log
p(znc = 1|v)
q(znc = 1)

+
D∑

d=1

∫ ∫
df c

ddgc
dq(f c

d)q(g
c
d)

logp
(

ynd|f c
d (xn), σ

c
d (xn)

2
)}
. (37)

Derivation of the variational posterior distribution q(W)

involves maximization of the variational free energy L(q)
over each one of the factors of q(W) in turn, holding the oth-
ers fixed, in an iterative manner [30]. By construction, this
iterative, consecutive updating of the variational posterior
distribution is guaranteed to monotonically and maximally
increase the free energy L(q) [29].

Let us denote as 〈.〉 the posterior expectation of a
quantity. From (37), we obtain the following variational
(approximate) posteriors over the parameters of our model:

1) Regarding the PYP stick-breaking variables vc, we
have

q(vc) = Beta(vc|βc,1, βc,2), (38)

where

βc,1 = 1 − δ +
N∑

n=1

q(znc = 1) (39)

βc,2 = 〈α〉 + cδ +
C∑

c′=c+1

N∑
n=1

q(znc′ = 1). (40)

2) The innovation parameter α approximately yields

q(α) = G(α|η̂1, η̂2), (41)

where

η̂1 = η1 + C − 1 (42)

η̂2 = η2 −
C−1∑
c=1

[
ψ(βc,2)− ψ(βc,1 + βc,2)

]
. (43)

ψ(.) denotes the Digamma function, and

〈α〉 = η̂1

η̂2
. (44)
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3) Regarding the posteriors over the latent functions
f c

d, we have

q(f c
d) = N (f c

d|μc
d, �

c
d), (45)

where

�c
d =

((
Kc(X,X)

)−1 + Bc
d

)−1
(46)

μc
d = �c

dBc
dyd (47)

Bc
d � diag

⎛
⎝
[

1〈
σ c

d(xn)2
〉q(znc = 1)

]N

n=1

⎞
⎠ (48)

and yd � [ynd]N
n=1.

4) Similar, regarding the posteriors over the latent
noise variance processes gc

d, we have

q(gc
d) = N (gc

d|mc
d,Sc

d), (49)

where

Sc
d =

((
�c(X,X)

)−1 + Qc
d

)−1
(50)

mc
d = �c(X,X)

(
Qc

d −
1
2

diag
[
q (znc = 1)

]N
n=1

)
1 + m̃c

d1

(51)

and Qc
d is a positive semi-definite diagonal matrix,

whose components comprise variational parameters
that can be freely set. Note that, from this result, it
follows

〈
σ c

d(xn)
2
〉
= exp

(
[mc

d]n − 1
2

[Sc
d]nn

)
. (52)

5) Finally, the posteriors over the latent variables Z
yield

q(znc = 1) ∝ exp
(〈

log�c(v)
〉)

exp (rnc) , (53)

where

〈
log�c(v)

〉 =
c−1∑
c′=1

〈
log(1 − vc′)

〉+ 〈logvc
〉

(54)

and

rnc � −1
2

D∑
d=1

{
1〈

σ c
d(xn)2

〉
[(

ynd − [μc
d]n
)2

+ [�c
d]nn

]
+ [mc

d]n

}
, (55)

where [ξ ]n is the nth element of vector ξ , [�c
d]nn is

the (n,n)th element of �c
d, and it holds

〈
logvc

〉 = ψ(βc,1)− ψ(βc,1 + βc,2) (56)〈
log(1 − vc)

〉 = ψ(βc,2)− ψ(βc,1 + βc,2). (57)

As a final note, estimates of the values of the model
hyperparameters set �, which comprises the hyperparam-
eters of the model priors and the kernel functions k(·, ·)
and λ(·, ·), are obtained by maximization of the model vari-
ational free energy L(q) over each one of them. For this
purpose, in this paper we resort to utilization of the limited
memory variant of the BFGS algorithm (L-BFGS) [31].

3.3 Predictive Density
Let us consider the predictive distribution of the dth model
output variable corresponding to x∗. To obtain it, we begin
by deriving the predictive posterior distribution over the
latent variables f . Following the relevant derivations of
Section 2.2, we have

q
(
f∗
) =

C∑
c=1

〈�c (v)〉
D∏

d=1

N
(

f c
∗d|ac

∗d,
(
σ c
∗d
)2)

, (58)

where

ac
∗d = kc(x∗)T

(
Kc(X,X)+ (Bc

d
)−1
)−1

yd (59)

(
σ c
∗d
)2 = −kc(x∗)T

(
Kc(X,X)+ (Bc

d
)−1
)−1

kc(x∗)

+ kc(x∗, x∗) (60)

〈�c(v)〉 = 〈vc〉
c−1∏
j=1

(
1 − 〈vj

〉)
(61)

〈vc〉 = βc,1

βc,1 + βc,2
(62)

and

k(x∗) � [k(x1, x∗), . . . , k(xN, x∗)]T. (63)

Further, we proceed to the predictive posterior distribu-
tion over the latent variables g; we yield

q
(
gc
∗d
) = N (gc

∗d|τ c
∗d, ϕ

c
∗d
)
, (64)

where

τ c
∗d = λc(x∗)T

(
Qc

d −
1
2

)
1 + m̃c

d (65)

ϕc
∗d = λc(x∗, x∗)T − λc(x∗)T

(
�c

d + (Qc
d)

−1
)−1

λc(x∗) (66)

and

λ(x∗) � [λ(x1, x∗), . . . , λ(xN, x∗)]T . (67)

Based on these results, the predictive posterior of our
model output variables yields

q(y∗d) =
∫

N
(

y∗d

∣∣∣∣
C∑

c=1

〈�c (v)〉 ac
∗d, (68)

C∑
c=1

〈πc (v)〉2
[(
σ c
∗d
)2 + exp

(
gc
∗d
)])

dgc
∗d.

We note that this expression does not yield a Gaussian pre-
dictive posterior. However, it is rather straightforward to
compute the predictive means and variances of y∗d. It holds

ŷ∗d = E
[
y∗d|x∗;D

] =
C∑

c=1

〈�c (v)〉 ac
∗d (69)

and

V
[
y∗d|x∗;D

] =
C∑

c=1

〈πc (v)〉2
[(
σ c
∗d
)2 + ψc

∗d

]
, (70)

where

ψc
∗d � E[exp(gc

∗d)|x∗;D] = exp
(
τ c
∗d +

1
2
ϕc
∗d

)
. (71)
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3.4 Learning the Covariances between the Modeled
Output Variables

As one can observe from (23), a characteristic of our
proposed GPMCH model is its assumption that the dis-
tribution of the modeled output vectors y ∈ R

D factorizes
over their component variables {yd}D

d=1. Indeed, this type
of modeling is largely the norm in Gaussian process-based
modeling approaches [20]. This construction in essence
implies that, under our approach, the modeled output vari-
ables are considered independent, i.e. their covariance is
always assumed to be zero. However, when jointly model-
ing the return series of various assets, the modeled output
variables (asset returns) are rather strongly correlated, and
it is desired to be capable of predicting the values of their
covariances for any given input value.

Existing approaches for resolving these issues of GP-
based models are based on the introduction of an additional
kernel-based modeling mechanism that allows for captur-
ing this latent covariance structure [32]–[36]. For example,
in [32] the authors propose utilization of a convolution
process to induce correlations between two output com-
ponents. In [35], a generalization of the previous method is
proposed for the case of more than two modeled outputs
combined under a convolved kernel. Along the same lines,
multitask learning approaches for resolving these issues are
presented in [33] and [34], where separate GPs are postu-
lated for each output, and are considered to share the same
prior in the context of a multitask learning framework.

A drawback of the aforementioned existing approaches
is that, in all cases, learning entails employing a tedious
optimization procedure to estimate a large number of
hyperparameters of the used kernel functions. As expected,
such a procedure is, indeed, highly prone to getting trapped
to bad local optima, a fact that might severely undermine
model performance.

In this work, to avoid being confronted with such opti-
mization issues, and inspired by the financial research
literature, we devise a novel way of capturing the interde-
pendencies between the modeled output variables {yd}D

d=1,
expressed in the form of their covariances: specifically, we
use the statistical tool of copulas [37].

The copula, introduced in the seminal work of Sklar [37],
is a model of statistical dependence between random vari-
ables. A copula is defined as a multivariate distribution
with standard uniform marginal distributions, or, alterna-
tively, as a function (with some restrictions mentioned for
example in [38]) that maps values from the unit hypercube
to values in the unit interval.

3.4.1 Copulas: An Introduction
Let y = [yd]D

d=1 be a D-dimensional random variable with
joint cumulative distribution function (cdf) F

(
[yd]D

d=1

)
, and

marginal cdf’s Fd(yd), d = 1, . . . ,D, respectively. Then,
according to Sklar’s theorem, there exists a D-variate copula
cdf C(·, . . . , ·) on [0, 1]D such that

F
(
y1, . . . , yD

) = C
(
F1(y1), . . . ,FD(yD)

)
(72)

for any y ∈ R
D. Additionally, if the marginals Fd(·), d =

1, . . . ,D, are continuous, then the D-variate copula
C(·, . . . , ·) satisfying (72) is unique. Conversely, if C(·, . . . , ·)

is a D-dimensional copula and Fi(·), i = 1, . . . ,D, are
univariate cdf’s, it holds

C (u1, . . . ,uD) = F
(

F−1
1 (u1), . . . ,F−1

D (uD)
)
, (73)

where F−1
d (·) denotes the inverse of the cdf of the dth

marginal distribution Fd(·), i.e. the quantile function of the
dth modeled variable yd.

It is easy to show that the corresponding probability den-
sity function of the copula model, widely known as the
copula density function, is given by

c (u1, . . . ,uD) = ∂D

∂u1 . . . ∂uD
C (u1, . . . ,uD)

= ∂D

∂u1 . . . ∂uD
F
(

F−1
1 (u1), . . . ,F−1

D (uD)
)

=
p
(

F−1
1 (u1), . . . ,F−1

D (uD)
)

∏D
i=1 pi

(
F−1

i (ui)
) , (74)

where pi (·) is the probability density function of the ith
component variable yi.

Let us now assume a parametric class for the copula
C(·, . . . , ·) and the marginal cdf’s Fi(·), i = 1, . . . ,D, respec-
tively. In particular, let ζ denote the (trainable) parameter
(or set of parameters) of the postulated copula. Then, the
joint probability density of the modeled variables y =
[yi]D

i=1 yields

p(y1, . . . , yD|ζ ) =
[ D∏

i=1

pi(yi)

]
c
(
F1(y1), . . . ,FD(yD)|ζ

)
. (75)

Since the emergence of the concept of copula, sev-
eral copula families have been constructed, e.g., Gaussian,
Clayton, Frank, Gumbel, Joe, etc, that enable capturing
of any form of dependence structure. By coupling differ-
ent marginal distributions with different copula functions,
copula-based models are able to model a wide variety
of marginal behaviors (such as skewness and fat tails),
and dependence properties (such as clusters, positive or
negative tail dependence) [38]. Selection of the best-fit cop-
ula has been a topic of rigorous research efforts during
the last years, and motivating results have already been
achieved [39] (for excellent and detailed discussions on
copulas, c.f. [38], [40]).

3.4.2 Proposed Approach
In this work, to capture the interdependencies (covari-
ances) between the GPMCH-modeled output variables, we
propose a conditional copula-based dependence modeling
framework. Specifically, for the considered D-dimensional
output vectors y = [yd]D

d=1, we postulate pairwise parametric
conditional models for each output pair (yi, yj)

D
i,j=1,i�=j, with

cdf’s defined as follows:

F(yi, yj|x) = C(Fi(yi|x),Fj(yj|x)|x), (76)

where the marginals Fd(yd|x) are the cdf’s that corre-
spond to the predictive posteriors q(y∗d) given by (68),
and the used input-conditional copulas are defined under
a parametric construction as

C(ui,uj|x) � C(ui,uj|ζij(x)) (77)
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Fig. 1. Squared return series considered in our experiments. (a) First scenario. (b) Second scenario. (c) Third scenario.

and we consider that the ζij(x) are given by

ζij(x) = ξ(γij(x)), (78)

where the γij(x) are trainable real-valued models, and ξ(·)
is a link function ensuring that the values of ζij(x) will
always be within the range allowed by the copula model
employed each time. For instance, if a Clayton copula C(·)
is employed, it is required that its parameter be positive,
i.e. ζij(x) > 0 [38]; in such a case, ξ(·) may be defined as the
exponential function, i.e. ξ(α) = exp(α).

Note that the predictive posteriors q(y∗d) are difficult to
compute analytically, since (68) does not yield a Gaussian
distribution. For this reason, and in order to facilitate effi-
cient training of the postulated pairwise conditional copula
models, in the following we approximate (68) as a Gaussian
with mean and variance given by (69) and (70), respectively.

Further, we consider the functions γij(x) to be linear basis
functions models. Specifically, we postulate

γij(x) = wT
ij h(x), (79)

where the wij are trainable model parameters, and the basis
functions h(x) are defined using a small set of basis input
observations {xi}I

i=1, and an appropriate kernel function k̃:

h(x) � [k̃(x, xi)]I
i=1. (80)

Training for the postulated pairwise conditional copula
models can be performed by optimizing the logarithm of
the copula density function that corresponds to the para-
metric conditional model (77), given a set of training data
D = (xn,yn)

N
n=1, which yields

Pij =
N∑

n=1

log c
(

Fi(yni|xn),Fj(ynj|xn)
∣∣ξ
(

wT
ij h(xn)

))
(81)

with respect to the parameter vectors wij. To effect this pro-
cedure, in this paper we resort to the L-BFGS algorithm [31].

TABLE 1
First Scenario: Obtained RMSEs Based on the

Percentage Returns

The procedure we use to perform model training
is widely known as “inference function for margins”
(IFM) [41]; it generally comprises two steps: on the first
step, the marginal model is maximized with respect to
its entailed (marginal) parameters, while, in the second
step, the copula model is maximized with respect to the
entailed (copula) parameters, using the marginal estimates
obtained from the first step. This way, model estimation
becomes computationally efficient, while comparison of dif-
ferent copulas can also be conducted in a convenient way,
by means of standard methodologies for assumption test-
ing. Of course, such an approximate training procedure
naturally results in some information loss. However, IFM
has been shown to yield good quality results for very attrac-
tive computational costs, especially when working with
large training datasets [41].

V
[
y∗i, y∗j|x∗;D

]

=
∫ ∫ [

C
(

Fi(κ|x∗),Fj(κ
′|x∗)

∣∣ξ
(

wT
ij h(x∗)

))

−Fi(κ|x∗)Fj(κ
′|x∗)

]
dκdκ ′. (82)

After training the postulated pairwise models
C(ui,uj|ζij(x)) ∀i �= j, computation of the predictive
covariance V

[
y∗i, y∗j|x∗;D

]
between the ith and the jth

model output given the input observation x∗ can be
conducted using the corresponding conditional copula
model and marginal predictive densities. Specifically, from
Hoeffding’s lemma [42]–[44], we directly obtain [Eq. (82)];
this latter integral can be approximated by means of
numerical analysis methods.

Note that, in deriving the proposed approach, we were
interested in modeling bivariate marginals separately. As
such, there is no enforcement that the result is a coher-
ent probabilistic model. This lack of our approach could
result in a loss of statistical efficiency by not conditioning
on the constraints enforcing coherence. On the other hand,
there are significant computational gains; in addition, the
resulting estimator might still be better than a fully coherent
model if there is severe mispecification.

4 EXPERIMENTAL EVALUATION

In this section, we elaborate on the application of our
GPMCH approach to volatility modeling for financial
return series data. We perform an experimental evaluation
of its performance in volatility modeling, and examine how
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TABLE 2
Second Scenario: Obtained RMSEs Based on the

Percentage Returns

it compares to state-of-the-art competitors. We also assess
the efficacy of the proposed copula-based approach for
learning the predictive covariances between the modeled
output variables of the GPMCH model.

For this purpose, we consider modeling the daily return
series of various financial indices, including currency
exchange rates, global large-cap equity indices, and Euribor
rates. We note that, in this work, asset return r(t) is defined
as the difference between the logarithm of the prices p(t) in
two subsequent time points, i.e., r(t) � logp(t)− logp(t−1).
All our source codes were developed in MATLAB R2012a.

4.1 Volatility Prediction Using the GPMCH Model:
Real Assets

In this set of experiments, we consider three application
scenarios:

• In the first scenario, we model the return series per-
taining to the following currency exchange rates, over
the period December 31, 1979 to December 31, 1998
(daily closing prices):

1) (AUD) Australian Dollar / U.S. $
2) (GBP) U.K. Pound / U.S. $
3) (CAD) Canadian Dollar / U.S. $
4) (DKK) Danish Krone / U.S. $
5) (FRF) French Franc / U.S. $
6) (DEM) German Mark / U.S. $
7) (JPY) Japanese Yen / U.S. $
8) (CHF) Swiss Franc / U.S. $.

• In the second scenario, we model the return series
pertaining to the following global large-cap equity
indices, for the business days over the period April
27, 1993 to July 14, 2003 (daily closing prices):

1) (TSX) Canadian TSX Composite
2) (CAC) French CAC 40
3) (DAX) German DAX
4) (NIK) Japanese Nikkei 225
5) (FTSE) U.K. FTSE 100
6) (SP) U.S. S&P 500.

• Finally, in the third scenario, we model the return
series pertaining to the following seven global large-
cap equity indices and Euribor rates, for the business
days over the period February 7, 2001 to April 24,
2006 (daily closing prices for the first 6 indices, and
annual percentage rate converted to daily effective
yield for the last index):

1) (TSX) Canadian TSX Composite
2) (CAC) French CAC 40
3) (DAX) German DAX

TABLE 3
Third Scenario: Obtained RMSEs Based on the

Percentage Returns

4) (NIK) Japanese Nikkei 225
5) (FTSE) U.K. FTSE 100
6) (SP) U.S. S&P 500
7) (EB3M) Three-month Euribor rate.

These series have become standard benchmarks for assess-
ing the performance of volatility prediction algorithms [23],
[45], [46]. We provide an illustration of the squares of the
considered return series in Fig. 1.

In all the considered scenarios, the proposed GPMCH
model is trained using as input data, x(t), vectors con-
taining the daily returns of all the assets considered in
each scenario. The corresponding training output data y(t)
essentially comprise the same series of input vectors shifted
one-step ahead. In other words, the output series are
defined as y(t) � r(t + 1), t > 0, and the input series as
x(t) � r(t), t < T, where T is the total duration of the mod-
eled return series, and the vectors r(t) contain the return
values of all the considered indices at time t.

In our experiments, we evaluate the GPMCH model
using zero kernels for the mean process, i.e. kc(x, x′) = 0 ∀c;
this construction allows for our model to remain con-
sistent with the existing literature, where it is typically
considered that the modeled return series constitute a zero-
mean noise-only process, i.e.

〈
f c
d (x)

〉 = 0 ∀d, c. Note though
that our approach can seamlessly deal with learning the
mean process f c

d (x), if a model for its covariance is avail-
able. Further, we consider autoregressive kernels of order
one for the noise variance process of the model, of the
form

λc(x, x′) = σ 2
0

(1 − φ2)
φ||x−x′||, (83)

where the φ and σ 2
0 are model hyperparameters, estimated

by means of free energy optimization (using the L-BFGS
algorithm).

To obtain some comparative results, we also evaluate:
(i) a common baseline approach from the field of financial
engineering and econometrics, namely the GARCH(1,1)
model [3], that is a GARCH model with volatility terms of
order one and residual terms of order one; (ii) the Mixed
Normal Conditional Heteroscedasticity (mix-GARCH(1,1))
approach of [14]; and (iii) the recently proposed VHGP
approach of [21]. All these approaches have been shown
to be very competitive in the task of volatility predic-
tion in financial return series [21], [47]. Note that the
GARCH(1,1) and mix-GARCH(1,1) models use as input the
time variable, while the VHGP model is trained similar to
GPMCH.

In our experiments, we follow an evaluation protocol
similar to [46]: all the evaluated methods are trained using
a rolling window of the previous 120 days of returns to
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Fig. 2. Second scenario: Obtained RMSEs based on the percentage returns. (a) GARCH. (b) mixGARCH. (c) VHGP. (d) GPMCH.

make volatility forecasts up to 30 days ahead; we retrain
the models every 7 days. As our performance metric used
to evaluate the considered algorithms, we consider the root
mean squared error (RMSE) between the model-estimated
volatilities and the squared returns of the modeled return
series. As discussed in [48], this groundtruth measurement
constitutes one of the few consistent ways of volatility
measuring; the same performance measure was employed
in [14].

TABLE 4
First Scenario: Obtained RMSEs Considering Comparison

Against the Asset Pair Return Products

In Tables 1–3, we provide the obtained results for the
three considered scenarios. These results are computed
over all the assets modeled in each scenario. In addi-
tion, to show how performance fluctuates as a function
of the prediction horizon, we further elaborate on the sec-
ond scenario: in Fig. 2, we depict the obtained RMSEs as
a function of the prediction horizon, separately for each
asset. As we observe, our method works clearly better than
the competition for all the modeled assets throughout the

TABLE 5
Second Scenario: Obtained RMSEs Considering Comparison

Against the Asset Pair Return Products
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Fig. 3. Volatility prediction: Synthetic experiments: (a) GPMCH: posteriors over g(x). (b) GPMCH: posteriors over y. (c) VHGP: posteriors over g(x).
(d) VHGP: posteriors over y.

considered 30-step prediction horizon. We also observe a
clear trend of prediction error increase for longer predic-
tion horizons in all assets. Similar results are obtained for
the rest of the considered experimental cases (omitted for
brevity).

4.2 Volatility Prediction Using the GPMCH model:
Synthetic Experiments

In this experiment, we evaluate our method using syn-
thetic data with availability of groundtruth predictions.
This way, we allow for gaining better insights into the
modeling capacity of our approach, and how it compares
to existing alternatives. Specifically, for this purpose, we
use a synthetic dataset of 200 data points generated by
Girolami and Calderhead in [49]. This dataset was obtained
by sampling from a VHGP model (i.e., an GPMCH with
one mixture component), where the latent function is set
to zero, i.e., k(x, x′) = 0, the mean of g(x) is of the form
m̃ = 2logβ, and the kernel of g(x) is of the form λ(x, x′) =
σ 2

0
1−φ2 φ

|x−x′|. Specifically, in the considered datasets, the
chosen values of the model hyperparameters were
σ0 = 0.15, φ = 0.98, β = 0.65.

To make the task harder and more realistic, we fur-
ther contaminated this dataset with white noise. We used
the so-obtained distorted data to perform training of our
GPMCH model as well as the related VHGP model. In
Figs. 3(a)–(d), we provide the obtained posteriors over g(x)
and the outputs y of the model; in these figures, the shaded
area illustrates the variance of the depicted posterior dis-
tributions. As we observe, our model obtains much better

accuracy, especially in terms of the obtained posteriors over
g(x). Finally, in Fig. 4 we provide the posterior over model
components obtained by our method; specifically, we show
how many data points are effectively assigned to each com-
ponent based on the MAP criterion. As we observe, we
eventually obtained 4 (effective) model components; all the
rest were empty.

4.3 Copula-Based Modeling of the Covariances
between Asset Returns

Here, we evaluate the performance of the proposed copula-
based approach for learning a predictive model of the
covariances between the GPMCH-modeled asset returns.

Fig. 4. Volatility prediction: Synthetic experiments. Posterior over model
components.
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Fig. 5. Pearson correlation coefficient between the modeled assets in the considered experimental scenarios. (a) First Scenario. (b) Second
Scenario. (c) Third Scenario.

For this purpose, we repeat the previous experimental
scenarios, with the goal now being to obtain predictions
regarding the covariances between the assets modeled each
time. To obtain an impression of how strongly correlated
the modeled assets are in each scenario, we provide the
Pearson correlation coefficient over the modeled assets in
Fig. 5. As we observe, most of the modeled assets in our
scenarios are found to be moderately to strongly correlated.

In our experiments, we consider application of three
popular Archimedean copula types, namely Clayton, Frank,
and Gumbel copulas [38]. The employed GPMCH models
are trained similar to the previous experiments. The postu-
lated conditional-copula pairwise models use a basis set of
input observations (to compute the h(x) in (80)) that com-
prises the 10% of the available training data points, i.e. 12
data points sampled at regular time intervals (one sample
every 10 days).

To obtain some comparative results, we also evalu-
ate the performance of two state-of-the-art methods used
for modeling dynamic covariance matrices (multivari-
ate volatility) for high-dimensional vector-valued observa-
tions; specifically, we consider the CCC-MVGARCH(1,1)
approach of [50], and the GARCH-BEKK(1,1) method
of [51]. As our evaluation metric, we use the products of
the returns of the corresponding asset pairs at each time
point. Our obtained results are depicted in Tables 4–6. We
observe that our approach yields a very competitive result:
specifically, in two out of the three considered scenarios, the
yielded improvement was equal to or exceeded one order of
magnitude, while, in one case, all methods yielded compa-
rable results. We also observe that switching the employed
Archimedean copula type had only marginal effects on
model performance, in all our experiments.

5 CONCLUSIONS

In this paper, we proposed a novel nonparametric Bayesian
approach for modeling conditional heteroscedasticity in
financial return series. Our approach consists in the postu-
lation of a mixture of Gaussian process regression models,
each component of which models the noise variance process

TABLE 6
Third Scenario: Obtained RMSEs Considering Comparison

Against the Asset Pair Return Products

that contaminates the observed data as a separate latent
Gaussian process driven by the observed data. We imposed
a nonparametric prior with power-law nature over the dis-
tribution of the model mixture components, namely the
Pitman-Yor process prior, to allow for better capturing mod-
eled data distributions with heavy tails and skewness. In
addition, in order to provide a predictive posterior for the
covariances over the modeled asset returns, we devised
a copula-based covariance modeling procedure built on
top of our model. To assess the efficacy of our approach,
we applied it to several asset return series, and compared
its performance to several state-of-the-art methods in the
field, on the grounds of standard evaluation metrics. As
we observed, our approach yields a clear performance
improvement over its competitors in all the considered
scenarios.
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