
Estimating Accuracy from Unlabeled Data

Emmanouil Antonios Platanios
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

e.a.platanios@cs.cmu.edu

Avrim Blum
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213
avrim@cs.cmu.edu

Tom Mitchell
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA 15213

tom.mitchell@cs.cmu.edu

Abstract

We consider the question of how unlabeled data
can be used to estimate the true accuracy of
learned classifiers. This is an important question
for any autonomous learning system that must es-
timate its accuracy without supervision, and also
when classifiers trained from one data distribu-
tion must be applied to a new distribution (e.g.,
document classifiers trained on one text corpus
are to be applied to a second corpus). We first
show how to estimate error rates exactly from
unlabeled data when given a collection of com-
peting classifiers that make independent errors,
based on the agreement rates between subsets of
these classifiers. We further show that even when
the competing classifiers do not make indepen-
dent errors, both their accuracies and error de-
pendencies can be estimated by making certain
relaxed assumptions. Experiments on two data
real-world data sets produce estimates within a
few percent of the true accuracy, using solely un-
labeled data. These results are of practical signif-
icance in situations where labeled data is scarce
and shed light on the more general question of
how the consistency among multiple functions is
related to their true accuracies.

1 INTRODUCTION

Estimating accuracy of classifiers is central to machine
learning and many other fields. Traditionally, one esti-
mates accuracy of a function based on its performance over
a set of labeled test examples. This paper considers the
question of under what conditions is it possible to esti-
mate accuracy based instead on unlabeled data. We show
that accuracy can be estimated exactly from unlabeled data
in the case that at least three different approximations to
the same function are available, so long as these functions
make independent errors and have better than chance ac-

curacy. More interestingly, we show that even if one does
not assume independent errors, one can still estimate ac-
curacy given a sufficient number of competing approxima-
tions to the same function, by viewing the degree of inde-
pendence of those approximations as an optimization cri-
terion. We present experimental results demonstrating the
success of this approach in estimating classification accu-
racies to within a few percentage points of their true value,
in two diverse domains.

We consider a “multiple approximations” problem set-
ting in which we have several different approximations,
f̂1, . . . , f̂N , to some target boolean classification function,
f : X → {0, 1}, and we wish to know the true accuracies
of each of these different approximations, using only unla-
beled data. The multiple functions can be from any source
- learned or manually constructed. One example of this set-
ting that we consider here is taken from the Never Ending
Language Learning system (NELL) [Carlson et al., 2010].
NELL learns classifiers that map noun phrases (NPs) to
boolean categories such as fruit, food and vehicle. For each
such boolean classification function, NELL learns several
different approximations based on different views of the
NP. One approximation is based on the orthographic fea-
tures of the NP (e.g., if the NP ends with the letter string
“burgh”, it may be a city), whereas another uses phrases
surrounding the NP (e.g., if the NP follows the word se-
quence “mayor of”, it may be a city). Our aim in this paper
is to find a way to estimate the error rates of each of the
competing approximations to f , using only unlabeled data
(e.g., many unlabeled NPs in the case of NELL).

2 RELATED WORK

Other researchers have considered variants of this “mul-
tiple approximations” setting. For example, [Blum and
Mitchell, 1998] introduced the co-training algorithm which
uses unlabeled data to train competing approximations to a
target function by forcing them to agree on classifications
of unlabeled examples. Others have used the disagreement
rate between competing approximations as a distance met-

ric to perform model selection and regularization [Schu-
urmans et al., 2006; Bengio and Chapados, 2003]. Bal-
can et al. [2013] used disagreement along with an ontol-
ogy to estimate the error of the prediction vector for multi-
class prediction, from unlabeled data, under an assump-
tion of independence of the input features given the label-
ing. Parisi et al. [2014] proposed a spectral method used to
rank classifiers based on accuracy and combine their out-
puts to produce one final label, also under an assumption
of independence of the input features given the labeling.
Moreover, there has been work at developing more robust
semi-supervised learning algorithms by using the concept
of agreement rates [Collins and Singer, 1999] or some task
specific constraints [Chang et al., 2007] to decide what
should be added to the training data set. However, very
few have tried to directly estimate actual per function er-
ror rates using agreement rates. In [Dasgupta et al., 2001]
the authors PAC-bound the error rates using the pairwise
agreement rates only, under the assumption that the func-
tions make independent errors, and [Madani et al., 2004]
estimate the average error of two predictors using their dis-
agreements. [Donmez et al., 2010] is one of the few to es-
timate per-function error rates from unlabeled data. Here,
the authors estimate the prediction risk for each function
under the assumption that the true probability distribution
of the output labels is known. Much of the emphasis of
their work is on methods that use the known label distribu-
tion to estimate the error rate even of a single classifier, but
agreements are used as well, especially under the assump-
tion of conditional independence. In contrast, we propose
here several methods for estimating actual function error
rates from agreement rates, without making these assump-
tions.

The main contributions of this paper include: (1) formulat-
ing the problem of estimating the error rate of each of sev-
eral approximations to the same function, based on their
agreement rates over unlabeled data, as an optimization
problem, (2) providing two different analytical methods
that estimate error rates from agreement rates in this set-
ting, one based on a set of simultaneous equations relating
accuracies, agreements, and error dependencies, and a sec-
ond, based on maximizing data likelihood, and (3) demon-
strating the success of these two methods in two very differ-
ent real-world problems. We consider our proposed meth-
ods a first step towards developing a self-reflection frame-
work for autonomous learning systems.

3 PROPOSED METHODS

We introduce two different methods to estimate the error
rates of binary functions in the multiple approximations
setting described in section 1. Both methods are based on
the idea of looking at the consistency between the different
functions’ predictions in order to determine the error rates
of those functions. The first method consists of matching

the sample agreement rates of the functions with the exact
formulas of those agreement rates written in terms of the
functions’ error rates. For the second method, we formu-
late the functions’ predictions consistency as a probabilis-
tic model and solve for the maximum likelihood estimate
(MLE) of their error rates. Both methods estimate the in-
dividual error rates for each function, as well as the joint
error rates of all possible subsets of those functions, based
on the predictions made by these functions over a sample
of unlabeled instances X1, . . . , XS .

In the following sections we denote the input data by X
and the true binary output label by Y . We assume the
input data X are drawn from some unknown distribution
P (X) = D, and Y ∈ {0, 1}. Let us consider N functions,
f̂1 (X) , . . . , f̂N (X) which attempt to model the mapping
from X to Y . For example, each function might be the
result of a different learning algorithm, or might use a dif-
ferent subset of the features of X as input. We define the
error event EA of a set of functions A as an event in which
every function in A makes an incorrect prediction:

EA =
∩
i∈A

[
f̂i (X) ̸= Y

]
, (1)

where ∩ denotes the set intersection operator and where A
contains the indices of the functions. We define the error
rate of a set of functions A (i.e. the probability that all
functions in A make an error together) as:

eA = PD (EA) , (2)

where PD (·) denotes the probability of an event under the
distribution over the input data X .

3.1 AGREEMENT RATES METHOD

Let us define the agreement rate aA, for a set of functions
A as the probability that all of the functions’ outputs1 are
the same:

aA = PD

({
f̂i (X) = f̂j (X) ,∀i, j ∈ A : i ̸= j

})
. (3)

This quantity can be defined in terms of the error rates of
the functions in A. In order to understand how we can write
the agreement rate in terms of error rates let us consider a
simple example where A = {i, j} (i.e. consider just the
pairwise agreement rate between the functions fi and fj .).
The probability of two functions agreeing is equal to the
probability that both make an error, plus the probability that
neither makes an error:

a{i,j} = PD
(
E{i} ∩ E{j}

)
+ PD

(
Ē{i} ∩ Ē{j}

)
, (4)

where ·̄ denotes the complement of a set. By using De Mor-
gan’s laws and the inclusion-exclusion principle we obtain,

1Here, “outputs” is equivalent to “predictions”.

using the notation defined in equation (2), an expression for
the agreement rate between the two functions, in terms of
their individual error rates, and their joint error rate:

a{i,j} = 1− e{i} − e{j} + 2e{i,j}. (5)

In the same way we obtain the following general result for
the agreement rate of a set of functions A of arbitrary size:

aA = PD

(∩
i∈A

Ei

)
+ PD

(∩
i∈A

Ēi

)
,

= eA + 1− PD

(∪
i∈A

Ei

)
,

= eA + 1 +

|A|∑
k=1

[
(−1)

k
∑
I⊆A
|I|=k

eI

]
,

(6)

where ∪ denotes the set union operator and |·| denotes the
number of elements in a set. For the first line we used the
fact that the two events,

{∩
i∈A Ei

}
and

{∩
i∈A Ēi

}
, are

mutually exclusive, for the second line we used one of De
Morgan’s laws and for the last line we used the inclusion-
exclusion principle.

In the next section we examine the most basic case, as-
suming that functions make independent errors and have
error rates below 0.5, showing that we can solve exactly
for the error rates provided that we have at least 3 different
functions. In the subsequent section we examine the most
general case, assuming that we have N functions that make
errors with unknown inter-dependencies, and show that we
can formulate this as a constrained numerical optimization
problem whose objective function reflects a soft prior as-
sumption regarding the error dependencies. Experimental
results presented in a later section demonstrate the practi-
cal utility of this approach, producing estimated error rates
that are within a few percentage points of the true error
rates, using only unlabeled data.

3.1.1 3 Functions That Make Independent Errors

When we have 3 functions that make independent errors
we can replace the e{i,j} term in equation (5) with the
term e{i}e{j}. In this case we have only 3 unknown vari-
ables (i.e. the individual function error rates) and we have
(32) = 3 equations (i.e. equation (5), for 1 ≤ i < j ≤ 3).
Therefore, we can directly solve for each error rate in terms
of the three observed agreement rates:

e{i} =
c±

(
1− 2a{j,k}

)
±2

(
1− 2a{j,k}

) , (7)

where i ∈ {1, 2, 3}, j, k ∈ {1, 2, 3} \i with j < k and:

c =
√(

2a{1,2} − 1
) (

2a{1,3} − 1
) (

2a{2,3} − 1
)
, (8)

where, for a set B and an element of that set b, the notation
B\b denotes the set containing all elements in B except
b. In practical applications, we can estimate the agreement
rates among the competing functions, using a sample of
unlabeled data X1, . . . , XS , as follows:

â{i,j} =
1

S

S∑
s=1

I
{
f̂i (Xs) = f̂j (Xs)

}
, (9)

where I {·} evaluates to one if its argument statement is true
and to zero otherwise.

In most practical applications the competing functions do
not make independent errors. We next consider the more
difficult problem of estimating the error rates from agree-
ment rates, but without assuming independence of the func-
tion error events.

3.1.2 N Functions That Make Dependent Errors

When we have N functions that make dependent errors we
rely on the agreement rate equation (6). We consider the
agreement rates for all sets A = {A ⊆ {1, . . . , N} : |A| ≥
2} of functions (the agreement rate is uninformative for less

..

KEY IDEA

The significance of equations (5) and (6) is that they relate the different agreement rates aA, which are easily estimated
from unlabeled data, to the true error rates eA of the functions, which are difficult to estimate without labeled data.
Note that if we have a system of such equations with rank equal to the number of error rates mentioned, then we can
solve exactly for these error rates in terms of the observed agreement rates. This is not the case in general, because
given a set of functions, f̂1, . . . , f̂N , we obtain 2N − N − 1 agreement rate equations (one for each subset of two or
more functions) expressed in terms of 2N − 1 error rates (one for each none-empty subset of functions). However, if we
assume that the errors made by the N individual functions are independent, then we can express all of the 2N − 1 error
rates in terms of N single-function error rates (e.g., e{i,j} = e{i}e{j}) and we can then solve exactly for all error rates
(given the additional assumption that error rates are better than chance). Furthermore, if we are unwilling to make the
strong assumption that errors of individual functions are independent, then we can instead solve for the set of error rates
that minimize the dependence among errors (e.g., among the infinite solutions to the underdetermined set of equations,
we choose the solution that minimizes

∑
i,j(e{i,j} − e{i}e{j})

2 - this idea can be easily extended to larger subsets than
simply pairs of functions). The key idea in this paper is that the correspondence between easily-observed agreement
rates and hard-to-observe error rates given by these equations can be used as a practical basis for estimating true error
rates from unlabeled data.

than two functions) and we obtain 2N − N − 1 equations
by matching equation (6) to the sample agreement rate for
each possible subset of functions. Given a sample of un-
labeled data X1, . . . , XS , the sample agreement rate is de-
fined as:

âA=
1

S

S∑
s=1

I
{
f̂i(Xs)= f̂j(Xs), ∀i, j∈A : i ̸= j

}
, (10)

and is an unbiased estimate of the true agreement rate.
Moreover, our unknown variables are all the individual
function error rates along with all of the possible joint func-
tion error rates (let us denote the vector containing all those
variables by e); that is a total of 2N −1 unknown variables.

The set of 2N−N−1 equations involving 2N−1 unknown
variables yields an underdetermined system of equations
with an infinite number of possible solutions. We there-
fore cast this problem as a constrained optimization prob-
lem where the agreement equations form constraints that
must be satisfied and where we seek the solution that min-
imizes the following objective:

c(e) =
∑

A:|A|≥2

(
eA −

∏
i∈A

ei

)2

. (11)

It can be seen that we are basically trying to minimize the
dependence between the error events2, while satisfying all
of the agreement rates constraints. We saw in section 3.1.1
that if we assume that the error events are independent, then
we can obtain an exact solution. By defining our optimiza-
tion problem in this way we are effectively relaxing this
constraint by saying that we want to find the error rates that
satisfy our constraints and that are, at the same time, as
independent as possible. Most existing methods trying to
estimate function error rates using only unlabeled data as-
sume that the error events are independent; the main nov-
elty of this method lies in the fact that we relax all those
assumptions and make no hard or strict assumptions about
our functions.

Note that we could also define different objective functions
based on information we might have about our function ap-
proximations or based on different assumptions we might
want to make. For example, one could try minimizing the
sum of the squares of all the error rates (i.e. the L2 norm
of e) in order to obtain the most optimistic error rates that
satisfy the agreement rates constraints. The novelty of our
method partly lies in the formulation of the error rates esti-
mation problem using only unlabeled data as a constrained
optimization problem.

In this section we defined the model we are using for this
method and the optimization problem we wish to solve.
We call this method the AR method (i.e. Agreement Rates

2That can be seen from the fact that when the error events are
independent we have that eA =

∏
i∈A ei.

method). In section 3.3 we define additional constraints
that both this method and the maximum likelihood method
(described in the next section) use.

3.2 MAXIMUM LIKELIHOOD METHOD

In this section we define a probabilistic model of the con-
sistency in the functions’ outputs, considering the most
general case of having N functions that make potentially
dependent errors. Let us denote the outputs of the func-
tions on an i.i.d. sample of data X1, . . . , XS by Ŷ s =[
f̂1 (Xs) , . . . , f̂N (Xs)

]
, for s ∈ {1, . . . , S}. The Ŷ s’s

are independent and therefore we can define the likelihood
of our model as:

L (e) = PD

(
Ŷ 1, . . . , Ŷ S |e

)
=

S∏
s=1

PD

(
Ŷ s|e

)
, (12)

where the parameter vector e contains all of the possible
error events probabilities. More specifically, it contains all
the eI , for all I ⊆ {1, . . . , N} and |I| ∈ {1, . . . , N}.

Now, Ŷ s contains all the function outputs given data sam-
ple Xs. In order to compute PD(Ŷ s|e) we need to consider
the following two cases:

1. All functions agree with each other (i.e. Ŷ s is a vector
of all 1’s or all 0’s).

2. The functions can be split into two non-empty groups:
those that output 1 and those that output 0.

The groups of functions with the same output can also be
viewed as maximal cliques in the graph whose nodes con-
sist of the functions and whose edges consist of the agree-
ments between the functions (i.e. when there is an agree-
ment between two functions there is an edge connecting
their corresponding nodes in the graph and when there is no
agreement between them there is no edge). By using this
representation we call the first case the “one clique case”
and the second case the “two cliques case”. We are now
going to consider those two cases separately.

One Clique Case: Let us denote the set of all function
indices in the clique by C (i.e. C = {1, . . . , N}). In this
case, either all functions make an error or none of them
does. Therefore, for the probability of the current sample
we have that:

PD(Ŷ s|e) = PD

(∩
i∈C

Ei

)
+ PD

(∩
i∈C

Ēi

)
,

= eC + 1− PD

(∪
i∈C

Ei

)
,

= eC + 1 +

|C|∑
k=1

[
(−1)

k
∑
I⊆C
|I|=k

eI

]
,

(13)

following an equivalent derivation to the one we used when
defining the agreement rates in section 3.1.

Two Cliques Case: Let us denote the set of function in-
dices in the first clique by C1 and those in the second clique
by C2. Then, we have two possible events:

1. All functions in C1 make an error and none of the func-
tions in C2 makes an error.

2. All functions in C2 make an error and none of the func-
tions in C1 makes an error.

Let P1
D(Ŷ s|e) denote the probability of Ŷ s given that the

first event of those two occurs, and let P2
D(Ŷ s|e) denote

the probability of Ŷ s given that the second event of those
two occurs. It can be easily seen that those two events
are mutually exclusive and so we have that PD(Ŷ s|e) =

P1
D(Ŷ s|e) + P2

D(Ŷ s|e).

Following an equivalent derivation to the one we used when
defining the agreement rates in section 3.1 we have that:

P1
D(Ŷ s|e) = PD

([∩
i∈C1

Ei

]
∩
[∩
j∈C2

Ēj

])
,

= PD

([∩
i∈C1

Ei

]
∩
[∪
j∈C2

Ej

])
,

= eC1 +

|C2|∑
k=1

[
(−1)

k
∑
I⊆C2

|I|=k

e{I∪C1}

]
.

(14)

..

A

.
B1

.
B2

Figure 1: Venn diagram
for the simple example
used to explain our last
step in equation (14).

For the second line we used
one of De Morgan’s laws
and for the last line we
used a modified form of
the inclusion-exclusion prin-
ciple. To understand the step
we used to obtain the last line
in the above equation let us
consider a simple case with
example events A, B1 and
B2. It is clear from the Venn
diagram in figure 1, on the
right, that:

P(A ∩ [B1 ∪B2]) = P (A)

− P (A ∩B1)− P (A ∩B2)

+ P (A ∩B1 ∩B2) .

(15)

Our last step in equation (14) follows from extending this
result using the inclusion-exclusion principle. In the same
way we also get that:

P2
D

(
Ŷ s|e

)
= eC2 +

|C1|∑
k=1

[
(−1)

k
∑
I⊆C1

|I|=k

e{I∪C2}

]
. (16)

Having defined our likelihood function all that remains is
to describe the optimization problem that we are solving to
obtain the maximum likelihood estimate for e. We use the
negative of the natural logarithm of the likelihood function
(i.e. the log-likelihood function) as our objective function,
which we want to minimize, and the details of how we per-
form the optimization are described in section 3.3. We call
this the MLE method.

3.2.1 Regularization

In this subsection we define a method which is a slight
modification of the above MLE method, in that it uses a
modified objective function. The objective function con-
sidered in our MLE method is non-convex and hence has
many local maxima. In order to avoid getting stuck into one
of those local maxima, or at least try to avoid it, we here add
a regularization term to the objective function. Following
the same argument we used in constructing the objective
function of the AR method, we define our new objective
function, which we wish to minimize, as:

c(e) = − logL (e) + λ
∑

A:|A|≥2

(
eA −

∏
i∈A

ei

)2

, (17)

where λ is a hyperparameter whose value can be chosen
arbitrarily. We call this the maximum a posteriori (MAP)
method because the added term is equivalent to adding a
Gaussian prior of a special form to the error rates esti-
mates3. As we will see in the experiments section the per-
formance of this method will depend on the value chosen
for λ.

3.3 OPTIMIZATION

In sections 3.1 and 3.2 we defined the optimization prob-
lems corresponding to each of our methods. For all meth-
ods we use the TOMLAB Base Module v.7.7 “conSolve”
solver. In the following sections we discuss: (1) some addi-
tional constraints that apply to all methods, (2) extensions
of our approach to the case where multiple approximations
are learned for each of several different target functions,
and (3) an approximation that can make our methods much
faster, more scalable and maybe even more accurate.

3.3.1 Error Rates Constraints

Our unknown variables include both individual function er-
ror rates and joint function error rates of those events. We
need to impose constraints on the values that the joint func-
tion error rates can take. These constraints follow from
basic rules of probability and set theory; they represent
bounding joint event probabilities using the corresponding
marginal event probabilities. These constraints are defined

3λ can be interpreted as a function of the variance of that prior.

by the following equation:

eA ≤ min
i∈A

eA\i, (18)

for |A| ≥ 2. Furthermore, regarding the individual func-
tion error rates, it is easy to see that if we transform all
ei, for i = 1, . . . , N , to 1 − ei, the resulting agreement
rates are equal to the original ones. A similar result holds
for the likelihood function. In order to make our mod-
els identifiable we add the constraint that ei ∈ [0, 0.5),
for i = 1, . . . , N , which simply means that our func-
tions/binary classifiers perform better than chance. It is
thus a very reasonable constraint4.

3.3.2 Dealing With Multiple Classification Problems

Up to this point we have assumed that there is a single
target function and multiple approximations to that func-
tion. More generally though, we might have multiple target
functions, or problem settings, and a common set of learn-
ing algorithms used for learning each one of those. For
example, this is the case in NELL, where the different tar-
get functions correspond to different boolean classification
problems (e.g., classifying NPs as “cities” or not, as “loca-
tions” or not, etc.). Multiple learning methods are utilized
to approximate each one of those target functions (e.g., a
classifier based on the NP orthography, a second classifier
based on the NP contexts, etc.), so that each such classifica-
tion problem, or target function, corresponds to an instance
of our “multiple approximations” problem setting.

Of course we can apply our AR or our MLE methods to
estimate accuracies separately for each target classification
problem (and that is what we actually did in our experi-
ments described in section 4). However, when we have
multiple target functions to be learned and multiple lean-
ing methods shared across each, there is an interesting op-
portunity to further couple the error estimates across these
different target functions. In equations (11) and (17) we
introduced terms to minimize the dependency between the
error rates of competing approximations. In the case where
we have multiple target functions, we might introduce ad-
ditional terms to capture other relevant assumptions. For
example, we could introduce a term to minimize the dif-
ference in error dependencies between two learning meth-
ods across multiple classification problems (e.g., we could
choose to minimize the difference in error dependencies
between orthography-based and context-based classifiers
trained for different classification problems).

3.3.3 Approximating High Order Error Rates

Once the agreement rate estimates (number of occurrences
of each clique formation in the case of the MLE method

4It is important to understand here that in order for our meth-
ods to work in the first place, this constraint must hold for the
classifiers that we are considering.

and the MAP method) have been calculated, the execu-
tion time of the optimization procedure for all proposed
methods does not depend on the number of provided data
samples5, S. It does however depend on the number of
functions, N . This can be easily seen by considering the
number of unknown variables we have which is equal to
2N − 1. As will be shown in section 4, the performance of
all methods, in terms how good the obtained function error
rate estimates are, increases with an increasing number of
functions, N . It is therefore not a good idea to try to reduce
N . So, we instead propose a way to reduce the execution
time of the optimization procedure by approximating high
order error rates, instead of estimating them directly.

We can estimate high order joint function error rates6 us-
ing lower order function error rates by using the following
formula, for |A| > Me, where Me is chosen arbitrarily:

eA =
1

|A|
∑
i∈A

eA\iei. (19)

With a high value of Me we obtain better estimates but exe-
cution time is larger, and vice-versa. This estimate is based
on the fact that the higher the order of the function error
rates, the less significant the impact of an independence as-
sumption between them.

Furthermore, the only available information regarding high
order error rates comes from high order sample agreement
rates6, âA, which will likely be very noisy estimates of the
true agreement rates. That is because there will be very
few data samples were all of the functions in A will agree
and therefore the sample agreement rate will be computed
using only a small number of data samples resulting in a
noisy estimate of the true agreement rate. This motivates
not directly estimating high order error rates, but instead
approximating them using low order error rates. In fact,
in the case that the sample agreement rates are too noisy,
this approximation might even increase the quality of the
obtained error rate estimates. By approximating high order
error rates in the way described earlier, we are effectively
ignoring the corresponding high order sample agreement
rates (i.e. they are not used in our estimation) for the AR
method.

5Even the execution time of the optimization procedure for the
MLE method, which seems to depend on S, does not actually de-
pend on it because there is only a fixed number of possible clique
combinations one can obtain for a given number of functions, N .
That number is equal to 2N−1. In a large data sample we will
have a lot of repeated samples in terms of the maximal cliques
that they result in. We can compute the log-likelihood term for
each one of those cliques only once and multiply it by the number
of samples in which they each appear. This way our algorithm’s
execution time only depends on N .

6By “order” of an error rate, eA, or agreement rate, aA, we
mean the number of functions in set A, or simply |A|.

4 EXPERIMENTS

We present here experiments using two very different data
sets, to explore the ability of our methods to estimate error
rates in realistic settings without domain-specific tuning.
For both data sets we used a set of labeled data examples to
perform our experiments. We used the data samples with-
out their corresponding labels to estimate agreement rates,
and to then estimate error rates using our methods. We used
the same examples with their labels to estimate each func-
tion’s true error rate, which we call from here on the ”true
error rate” of the function.

NELL Data Set: This data set consists of data samples
where we use four binary logistic regression (LR) classi-
fiers to predict whether a NP belongs to a specific cate-
gory in the NELL knowledge base (e.g. is Monongahela a
river?). The domain in this case is defined by the category
(e.g. “beverage” and “river” are two different domains) and
the four classifiers used were the following: (1) ADJ: A LR
classifier that uses as features the adjectives that occur with
the NP over millions of web pages, (2) CMC: A LR clas-
sifier that considers orthographic features of the NP (e.g.
does the NP end with the letter string “burgh”? - more de-
tails can be found in [Carlson et al., 2010]), (3) CPL: A
LR classifier that uses as features words and phrases that
appear with the NP, and (4) VERB: A LR classifier that
uses as features verbs that appear with the NP. Table 1 lists
the NELL categories that we used as the domains in our
experiments, along with the number of labeled examples
available per category. Note the NP features used by these
four classifiers are somewhat independent given the correct
classification label.

Brain Data Set: Functional Magnetic Resonance Imag-
ing (fMRI) data were collected while 8 subjects read a
chapter from a popular novel [Rowling, 2012], one word
at a time. The classification task is to find which of two
40 second long story passages correspond to an unlabeled
40 second time series of fMRI neural activity. For this bi-
nary classification task, we consider eight different classi-
fiers, each making its prediction based on a different rep-
resentation of the text passage (e.g., the number of letters
in each word of the text passage, versus the part of speech
of each word, versus emotions experienced by characters in
the story, etc.). In this case different domains correspond to
11 different locations in the brain and we have 924 labeled
examples per location. Additional details can be found in
[Wehbe et al., 2014].

Our experimental results for both data sets are presented
and discussed in the following two sections. As a perfor-
mance measure we use the mean absolute deviation (MAD)
between the true function error rates and the function error
rates estimated from unlabeled data (i.e. we sum the abso-
lute values of the element-wise differences of the true error

Table 1: A listing of the 15 NELL categories we used as
the domains in our experiments, along with the number of
labeled examples available per category.

Category # Examples
animal 20,733

beverage 18,932
bird 19,263

bodypart 21,840
city 21,778

disease 21,827
drug 20,452
fish 19,162

Category # Examples
food 19,566
fruit 18,911

muscle 21,606
person 21,700
protein 21,811
river 21,723

vegetable 18,826

rates vector and the estimated error rates vector). We com-
pute the MAD for the individual function error rates alone,
for the pairwise function error rates (i.e. for |A| = 2) alone
and for all function error rates together. Note the higher
order error rates are quite small, because it is rare for ev-
ery one of the competing functions to simultaneously err.
Therefore, we consider the individual and pairwise func-
tion error rates to be most diagnostic of how well our ap-
proach is working.

4.1 NELL DATA SET RESULTS

We initially applied the AR method using only the ADJ, the
CPL and the VERB classifiers, while assuming that they
make independent errors. The method for estimating error
rates in this case is described in section 3.1.1. In this case
we estimate only the individual function error rates. The
resulting MAD is 2.82 × 10−2; that is, the average error
estimate is within a few percent of the true error. Although
encouraging, this MAD is poor in comparison to our less
restricted methods described below, and indicates that the
assumption that the classifiers make independent errors is
an incorrect in this case (and in most other cases as a mat-
ter of fact). Some of the obtained error rates are not even
within the interval [0, 0.5] and are thus obviously incorrect,
since we know by the construction of the problem that the
true error rates lie in this interval. From now on we con-
sider only the more general case of N functions that make
dependent errors, thus making no independence assump-
tions.

Table 2 presents results for all three of our methods used
with the entire NELL data set. It includes the results ob-
tained when using all available data samples (i.e. the num-
bers shown in table 1) and when using only 50 data sam-
ples per category. It is clear from this table that the more
data samples we have the better our methods perform, pre-
sumably due to the the more accurate estimates of the true
agreement rates for the AR method, and for the other two
methods, to the larger volume of evidence we have to in-
corporate into our likelihood. Furthermore, we see that the
AR method performs significantly better than the other two
methods. This could possibly be attributed to the fact that

beverage

0

0.02

0.04

0.06

0.08

0.1

ADJ CMC CPL VERB

True Value
AR

bird

0

0.02

0.04

0.06

0.08

0.1

ADJ CMC CPL VERB

True Value
AR

bodypart
Er

ro
r R

at
e

0

0.04

0.08

0.12

0.16

0.2

ADJ CMC CPL VERB

True Value
AR

person

0

0.06

0.12

0.18

0.24

0.3

ADJ CMC CPL VERB

True Value
AR

protein

0

0.02

0.04

0.06

0.08

0.1

ADJ CMC CPL VERB

True Value
AR

Figure 2: True errors (red bars) versus errors estimated from unlabeled data using AR method (blue bars), for four com-
peting function approximations (ADJ, CMC, CPL and VERB), to five different target function domains (i.e. “bodypart”,
”beverage”, ”bird”, ”person” and“protein”) using the NELL data set. Note each plot uses a different vertical scale to make
it easier to observe the accuracy of the error rates estimates.

Table 2: Mean absolute deviation (MAD) of individual
(Ind.), pairwise (Pair.) and all function error rates for the
NELL data set, for all three proposed methods and for the
cases where we use all of the available data samples and
only 50 data samples per domain.

×10−2 All Data Samples 50 Data Samples
Ind. Pair. All Ind. Pair. All

AR 0.49 0.31 0.29 0.82 0.39 0.40
MLE 2.77 2.19 1.84 20.06 19.96 15.42
MAP 1.54 1.30 1.08 13.11 15.17 11.14

for this method we solve a convex optimization problem,
whereas for the other two we solve a non-convex one and
we possibly get stuck in local minima. Better numerical
optimization solvers could possibly help with that. Finally,
the MAP method performs better than the MLE method,
presumably reflecting the correctness of our prior which at-
tempts to minimize dependencies in errors across compet-
ing approximations. We did discover that the performance
of the MAP method depends strongly on the choice of the λ
parameter. In this case we selected λ = 10 simply because
that value gave the regularization term the same order of
magnitude as the log-likelihood term in the objective func-
tion. Moreover, now it becomes clear why the 2.82× 10−2

MAD that we obtained when we assumed independent er-
ror events is quite a bad result. The AR method manages to
achieve an MAD that is almost 6 times better than that.

We also run an experiment by using the approximation de-
scribed in section 3.3.3 and setting Me = 2 (i.e. consid-
ering only pairwise agreement rates). The individual func-
tions MAD in this case was 0.52× 10−2, the pairwise one
was 0.35 × 10−2 and the overall one was 0.31 × 10−2.
These results are worse than the ones we obtained with-
out using this approximation, as expected, but they are still
very good. This is important because it shows that this pro-
posed approximation method is useful (there was a signifi-
cant speedup as well - the code run 3 times faster).

From these results it is clear that the AR method, which
also happens to be the simplest and fastest of the three
methods we propose, performs better than the other pro-
posed methods, for this data set, and also does not require
tuning any parameters (as opposed to the MAP method).

..

INDEPENDENCE ASSUMPTION WEAKNESS

In order to make it more clear that the independence
assumption is not very appropriate even in the case of
NELL where a significant amount of effort has been put
into having the NELL classifiers make independent er-
rors, we provide here a measure of that dependence.
We compute the following quantity for each domain:

1

Z

∑
i,j

∣∣∣∣ e{i,j}

e{i}e{j}
− 1

∣∣∣∣ , (20)

where Z is the total number of terms in the sum, and
we average over all domains. That gives us a mea-
sure of the average dependence of the functions error
rates across all domains. If the functions make indepen-
dent errors, then this quantity should be equal to 0. We
computed this quantity for the NELL data set using the
sample error rates, which are an estimate of the true
error rates (a pretty accurate estimate since we have
about 20, 000 data samples per domain), and we ob-
tained a value of 8.1770, which is indeed quite far from
0. That indicates why our methods, and especially the
AR method, do so much better than the exact solution
when assuming independent errors.

Figure 2 provides a plot of the estimated error rates for the
AR method, along with the true error rates for five ran-
domly selected NELL classification problems (plots for all
regions are not included in this paper due to space con-
straints). This plot gives an idea of how good the AR es-
timates are, and helps to make sense of the reported MAD
values. As is easily seen in this plot, irrespective of the
exact error estimate the ranking of the competing function
approximations based on error rate is recovered exactly by
using the AR method. And that is in fact true for each
of the 15 NELL target function classification problems we
evaluated – not only for the five shown in this figure.

4.2 BRAIN DATA SET RESULTS

Table 3 presents results for the brain data set, obtained
when using 4 of the 8 competing function approximations
(randomly selected to be classifiers 1, 3, 4 and 5) and when
using all 8 of them. It is clear from that table that the
more competing classifiers used, the better the quality of
the resulting estimates. When using all 8 classifiers the
AR method performs significantly better than the other two

Region #1
Er

ro
r R

at
e

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8

True Value
AR

Region #2

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8

True Value
AR

Region #3

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8

True Value
AR

Figure 3: True errors (red bars) versus errors estimated from unlabeled data using AR method (blue bars), for eight
competing function approximations (based on different story features), to three different target function domains (using
neural activity from three different brain regions) using the brain data set. Note estimates from unlabeled data are quite
close to true errors.

Table 3: Mean absolute error (MAE) of individual (Ind.),
pairwise (Pair.) and all function error rates for the brain
data set, for all three proposed methods and for the cases
where we use 4 classifiers and 8 classifiers.

×10−2 4 Classifiers 8 Classifiers
Ind. Pair. All Ind. Pair. All

AR 10.97 6.60 6.50 4.36 4.14 2.01
MLE 10.60 8.34 7.64 32.02 12.33 4.50
MAP 9.61 18.19 11.16 27.95 18.60 7.26

methods. We have also included a plot of the estimated er-
ror rates for the AR method, along with the true error rates,
for three randomly selected brain regions (i.e. domains), in
figure 3 (it is clear from the figure that we can recover the
ranking of the classifiers based on error rate, using the AR
method, for this data set as well).

Note for this data set, for the case when we use 8 clas-
sifiers, the MLE method and the MAP method both per-
form poorly. This can probably be attributed to the opti-
mization algorithm not being able to deal with those prob-
lems very well, due to their high dimensionality and non-
convexity. These results could probably be improved by
choosing a different optimization algorithm better suited
for those problems. It is interesting to note that when we
use only 4 classifiers the MLE and the MAP methods per-
form slightly better than the AR method in estimating the
individual function error rates. However, they perform sig-
nificantly worse when dealing with higher order error rates
and so, overall, the AR method still dominates. Note than
for this data set, for the MAP method, we also selected
λ = 10 for the same reasons as for the NELL data set.

We also ran an experiment using the approximation de-
scribed in section 3.3.3 and setting Me = 2 (i.e. consid-
ering only pairwise agreement rates). The individual func-
tions MAD in this case was 4.40× 10−2, the pairwise one
was 4.06×10−2 and the overall one was 1.90×10−2. These
results are slightly better than the ones we obtained with-
out using this approximation. This is important because it
shows once again that this proposed approximation method
is useful (there was a significant speedup as well - the code
run 8 times faster). The better accuracy could possibly be
attributed to two factors: (i) the problem is of much lower
dimensionality and so the optimization algorithm might be

dealing better with it and (ii) the high order sample agree-
ment rates might have been bad estimates of the true agree-
ment rates due to insufficient data and so they might have
affected our methods negatively.

5 CONCLUSION

We have introduced the concept of estimating the error rate
of each of several approximations to the same function,
based on their agreement rates over unlabeled data and we
have provided three different analytical methods to do so:
the AR method, the MLE method and the MAP method.
Our experiments showed that the AR method performs sig-
nificantly better than the other two methods for both data
sets we considered. Our results are very encouraging and
suggest that function agreement rates are indeed very use-
ful in estimating function error rates. We consider this work
to be a first step towards developing a self-reflection frame-
work for autonomous learning systems.

There are several directions we would like to pursue to fur-
ther improve upon the methods introduced here. Firstly,
we wish to explore other interesting natural objectives one
can aim to optimize, as described in section 3.1.2. It would
also be very interesting to explore possible generalizations
of our models to non-boolean, discrete-valued functions,
or even to real-valued functions. Finally, apart from sim-
ply estimating function error rates, we want to explore how
the obtained error rate estimates can be used to improve the
learning ability of a system such as NELL, for example. In
this context, we could try using our estimates in order to
develop a more robust co-training framework. One very
direct application of our methods would be to use the esti-
mated error rates and their dependencies in order to com-
bine the functions’ outputs and obtain one final output.

Acknowledgements

We thank Leila Wehbe for providing us with the brain
data set and Alan Ritter and Siddharth Varia for provid-
ing us with the NELL data set. Finally, we thank the pre-
viously mentioned people, Jayant Krishnamurthy and the
anonymous reviewers for their helpful comments. This re-
search has been supported in part by DARPA under con-
tract number FA8750-13-2-0005 and in part by NSF grants
IIS-1065251 and CCF-1116892.

References

Maria-Florina Balcan, Avrim Blum, and Yishay Mansour.
Exploiting Ontology Structures and Unlabeled Data for
Learning. International Conference on Machine Learn-
ing, pages 1112–1120, 2013.

Yoshua Bengio and Nicolas Chapados. Extensions to
Metric-Based Model Selection. Journal of Machine
Learning Research, 3:1209–1227, March 2003.

Avrim Blum and Tom Mitchell. Combining labeled and
unlabeled data with co-training. In Proceedings of the
Eleventh Annual Conference on Computational Learn-
ing Theory, COLT’ 98, pages 92–100, 1998. doi:
10.1145/279943.279962.

Andrew Carlson, Burr Settles, Justin Betteridge, Bryan
Kisiel, Estevam R Hruschka Jr, and Tom M Mitchell. To-
ward an Architecture for Never-Ending Language Learn-
ing. In Conference on Artificial Intelligence (AAAI),
pages 1–8, 2010.

Ming-Wei Chang, Lev Ratinov, and Dan Roth. Guiding
Semi-Supervision with Constraint-Driven Learning. In
Annual Meeting of the Association of Computational
Linguistics, pages 280–287, Prague, Czech Republic,
June 2007.

Michael Collins and Yoram Singer. Unsupervised Models
for Named Entity Classification. In Joint Conference on
Empirical Methods in Natural Language Processing and
Very Large Corpora, pages 1–11, 1999.

Sanjoy Dasgupta, Michael L Littman, and David
McAllester. PAC Generalization Bounds for Co-training.
In Neural Information Processing Systems, pages 375–
382, 2001.

Pinar Donmez, Guy Lebanon, and Krishnakumar Balasub-
ramanian. Unsupervised Supervised Learning I: Esti-
mating Classification and Regression Errors without La-
bels. Journal of Machine Learning Research, 11:1323–
1351, April 2010.

Omid Madani, David M Pennock, and Gary W Flake. Co-
Validation: Using Model Disagreement on Unlabeled
Data to Validate Classification Algorithms. In Neural
Information Processing Systems, pages 1–8, 2004.

Fabio Parisi, Francesco Strino, Boaz Nadler, and Yu-
val Kluger. Ranking and combining multiple predic-
tors without labeled data. Proceedings of the National
Academy of Sciences, pages 1–28, January 2014.

J.K. Rowling. Harry Potter and the Sorcerer’s Stone.
Harry Potter US. Pottermore Limited, 2012. ISBN
9781781100271.

Dale Schuurmans, Finnegan Southey, Dana Wilkinson,
and Yuhong Guo. Metric-Based Approaches for Semi-
Supervised Regression and Classification. In Semi-
Supervised Learning, pages 1–31. 2006.

Leila Wehbe, Brian Murphy, Partha Talukdar, Alona Fyshe,
Aaditya Ramdas, and Tom Mitchell. Predicting brain
activity during story processing. in review, 2014.

	INTRODUCTION
	RELATED WORK
	PROPOSED METHODS
	AGREEMENT RATES METHOD
	3 Functions That Make Independent Errors
	N Functions That Make Dependent Errors

	MAXIMUM LIKELIHOOD METHOD
	Regularization

	OPTIMIZATION
	Error Rates Constraints
	Dealing With Multiple Classification Problems
	Approximating High Order Error Rates

	EXPERIMENTS
	NELL DATA SET RESULTS
	BRAIN DATA SET RESULTS

	CONCLUSION

