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Abstract
We consider the question of how unlabeled data
can be used to estimate the true accuracy of
learned classifiers, and the related question of
how outputs from several classifiers performing
the same task can be combined based on their es-
timated accuracies. To answer these questions,
we first present a simple graphical model that
performs well in practice. We then provide two
nonparametric extensions to it that improve its
performance. Experiments on two real-world
data sets produce accuracy estimates within a few
percent of the true accuracy, using solely unla-
beled data. Our models also outperform existing
state-of-the-art solutions in both estimating accu-
racies, and combining multiple classifier outputs.

1. Introduction
Estimating accuracy of classifiers is central to machine
learning and many other fields. Accuracy is defined as the
probability of a classifier output disagreeing with the true
underlying label, over the true distribution of input data to
that classifier. Most existing approaches to estimating ac-
curacy are supervised, meaning that labeled examples are
required for the estimation. This paper presents an unsu-
pervised approach for estimating accuracies, meaning that
only unlabeled data are required. Being able to estimate
the accuracies of classifiers using only unlabeled data is im-
portant for any autonomous learning system that operates
under no supervision. It is also useful in a transfer learning
setting, when classifiers trained using data from one distri-
bution must be applied to data from a new distribution. This
is actually an omnipresent scenario (it is not uncommon for
the data used to train a classifier to be distributed differently
than the data the classifier makes predictions for).

We propose an approach based on a probabilistic graphical
model that allows us to estimate accuracies of classifiers
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using only unlabeled data. Our approach further allows us
to infer the posterior distribution of a single label for each
data sample, jointly with the accuracies of our classifiers,
and it can also handle missing data. That is the case with
data samples for which a classifier might not have predicted
any label. This can happen when the classifier does not
have any features for those data samples, for example, and
it is not uncommon in practice (an example of such a case
is the system described in the next paragraph). Moreover,
we propose two nonparametric extensions to that model
that allow sharing of information among different classi-
fication problems and different classifiers, that are useful in
the case of limited data. We present experimental results
demonstrating the success of our approaches in estimating
classification accuracies in two diverse domains. Further-
more, we also present results showing that our method out-
performs existing methods for combining classifier outputs
into a single label.

We consider a problem setting where we have several dif-
ferent approximations f̂1, . . . , f̂N , to some target boolean
classification function, f : X → {0, 1}, and we wish to
know the true accuracies of each of these different approx-
imations, using only unlabeled data. We also want to know
the single most likely output label, meaning the most likely
response of the true underlying function f . These func-
tion approximations can be from any source. For exam-
ple, they can be learned classifiers or even human work-
ers in a crowdsourcing setting. One example of this set-
ting that we consider here is taken from the Never Ending
Language Learning system (NELL) (Carlson et al., 2010;
Mitchell et al., 2015). Out of NELL’s over 2,500 learn-
ing tasks, many involve learning classifiers that map noun
phrases (NPs) to boolean categories such as fruit, and food.
For each such boolean classification function, NELL learns
several different approximations based on different views
of the NP. One approximation is based on the orthographic
features of the NP (e.g., a NP ending with the letter string
“burgh” provides statistical evidence that the referenced
entity may be a city), whereas another uses phrases sur-
rounding the NP (e.g., a NP followed by the word sequence
“mayor of” provides statistical evidence that the referenced
entity may be a city). The aim of this paper is to find a way
to estimate the error rates of each one of these approxi-
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mations to the underlying function f , using only unlabeled
data, and to infer the posterior distribution of the response
of function f while accounting for these error rates.

2. Related Work
The setting we are considering was previously explored by
Collins & Singer (1999), Dasgupta et al. (2001), Bengio &
Chapados (2003), Madani et al. (2004), Schuurmans et al.
(2006), Balcan et al. (2013), and Parisi et al. (2014), among
others. Most of their approaches, however, made certain
strong assumptions, such as assuming independence given
the labels, or assuming knowledge of the true distribution
of the labels. Platanios et al. (2014) provided an analy-
sis of this related work and then formulated the problem
of estimating the error rates of several approximations to a
function as an optimization, using the agreement rates over
unlabeled data while relaxing some of those assumptions.
However, their method, as well as most of the related work,
is unable to handle missing data and also does not directly
deal with the problem of combining classifier outputs into
a single label. Collins & Huynh (2014) review many meth-
ods that have been proposed for estimating the accuracy
of medical tests in the absence of a gold standard. This is
effectively the same problem that we are considering, ap-
plied to the domains of medicine and biostatistics. They
start by presenting a method for estimating the accuracy
of tests, where those tests are applied in multiple different
populations (i.e., different input data), while assuming that
the accuracies of the tests are the same across those popu-
lations, and that the test results are independent conditional
on the true “output label”. These are similar assumptions to
the ones made by several papers already mentioned above,
but the idea of applying the tests to multiple populations is
new. Collins & Huynh (2014) also review many methods
that relax these assumptions in different ways and they also
briefly discuss some Bayesian models for doing so.

Dawid & Skene (1979) were the first to formulate the prob-
lem in terms of a graphical model and Moreno et al. (2015)
proposed a nonparametric extension applied to crowd-
sourcing. The current state-of-the-art, to the best of our
knowledge, is the work of Tian & Zhu (2015) and also
comes from the area of crowdsourcing. The authors pro-
posed an interesting max-margin majority voting scheme
for combining classifier outputs. As we show in our exper-
iments, our methods are able to outperform their approach,
while at the same time being significantly less complicated.

3. Motivation and Intuition
It can be observed from the related work that most of it
is trying to relate agreement rates between different clas-
sifiers (which are observed) with the accuracies of these
classifiers. We follow a similar approach in this paper.
More specifically, one of our goals is to shed light on the
more general question of how the consistency among mul-
tiple functions is related to their true accuracies. We now

present an example that provides some intuition behind
why one might want to use agreement rates as indicators
of correctness, and what issues might arise in doing so.

Let us consider a case where a person asks 10 different peo-
ple a question that is related to politics and 8 of these peo-
ple agree on an answer. One might immediately think that
since we have such a strong majority, that answer must be
correct. However, one has to be careful. Let us assume that
these 8 people that agree belong to the same political party
and that the 2 people that gave a different answer belong to
some other party. In this case, we might want to reconsider
whether that answer is correct and to what extent we trust
it. Now, if 7 of the people from that party were in agree-
ment and 1 person from the other party had also agreed
with them, then we would trust that answer even more.
We therefore see that there is a relationship between how
dependent the agreeing functions are and the question of
whether consistency implies correctness. One trivial exam-
ple that reinforces this argument is when our multiple func-
tions are in fact copies of the same function and thus fully
dependent. In this case, consistency among these functions
gives us no information about their correctness (i.e., they
are always consistent with each other in their responses).
Our paper aims to formalize this intuition by developing a
probabilistic framework to reason about them.

This example also raises a new question: if functions that
are highly dependent disagree, then what does this im-
ply about the question being asked, or about the functions
themselves? In the example where people are asked politi-
cal questions, it might imply that the question has no single
underlying true answer. In general, this case may corre-
spond to the classification problem being too hard, or the
functions being too uncertain about their answers. This is
an interesting question to explore that relates to the field of
active learning, but is outside the scope of our paper.

4. Proposed Methods
We first propose a simple and elegant probabilistic graph-
ical model that, as we show in the experiments section,
achieves better accuracy in error rates estimation than the
current state-of-the-art and, at the same time, combines the
outputs of several function approximations to produce a
single label for each data example, and is also able to han-
dle missing data. We then extend that model so that infor-
mation can be shared across different classification prob-
lems, which is especially important in the case of limited
data. Finally, we further extend the model to group exam-
ples according to various function approximations, which
as shown in most previous work (Moreno et al., 2015),
plays an important role in error rate estimation.

4.1. Bayesian Error Estimation

Following from the introduction, we consider a “multiple
approximations” problem setting in which we have sev-
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eral different approximations, f̂1, . . . , f̂N , to some target
boolean classification function, f : X → {0, 1}, and we
wish to know the true accuracies of each of these differ-
ent approximations, using only unlabeled data, as well as
the single most likely single label, meaning the most likely
response of the true underlying function f . We define the
following generative process to do that, where we are only
given a set of unlabeled data X1, . . . , XS and the function
approximations f̂1, . . . , f̂N :

1. Let us make the assumption that there is an underlying
distribution from which the labels for all the data ex-
amples are sampled. We first draw p ∼ Beta(αp, βp),
representing the prior probability for the true label be-
ing equal to 1, over all possible examples.

2. For each data example,Xi where i = 1, . . . , S, we draw
a label `i ∼ Bernoulli(p). This label is the true label
f(Xi).

3. Let us further assume that there is another underlying
distribution from which the error rates of our function
approximations are sampled. For each function approx-
imation, f̂j where j = 1, . . . , N , we draw an error rate
ej ∼ Beta(αe, βe).

4. Finally, we can assume that each function takes the sam-
pled label for each example and flips it with probability
equal to its error rate (thus making an error). It then out-
puts the resulting label. Thus, for each data example,
Xi, and function approximation, f̂j , we draw an output
label, f̂ij , according to the following distribution:

f̂ij =

{
`i , with probability 1− ej ,
1− `i , otherwise.

(1)

This output label corresponds to f̂j(Xi).

We emphasize the last step in the generative process, where
with probability equal to the function error rate, the correct
label is flipped and the function approximation makes an
error. A graphical representation of the model, along with
a compact definition, is shown in figure 1.

In order to perform inference for this simple model we use
Gibbs sampling (Geman & Geman, 1984), a well-known
Markov Chain Monte Carlo (MCMC) sampling approach.
The conditional probabilities we use during sampling are
as follows:

P (p | ·) = Beta(αp + σ`, βp + S − σ`), (2)

P (`i | ·) ∝ p`i(1− p)1−`iπi, (3)
P (ej | ·) = Beta(αe + σj , βe + S − σj), (4)

where:

σ` =

S∑
i=1

`i, σj =

S∑
i=1

1{f̂ij 6=`i}, (5)

πi =

N∏
j=1

e
1{f̂ij 6=`i}

j (1− ej)
1{f̂ij=`i} , (6)

p
αp

βp
`i fij ej

αe

βe

S

N

p ∼ Beta(αp, βp),
`i ∼ Bernoulli(p), for i = 1, . . . , S,

ej ∼ Beta(αe, βe), for j = 1, . . . , N,

f̂ij =

{
`i , with probability 1− ej ,
1− `i , otherwise.

Figure 1: Simple probabilistic graphical model for error
rate estimation using only unlabeled data.

and 1{·} evaluates to one if its subscript’s argument state-
ment is true and to zero otherwise. We sequentially sample
from those three distributions, by sampling each random
variable while keeping the others fixed to their last sam-
pled value. The distribution of the samples we obtain is
guaranteed to converge to the true posterior distribution of
our random variables, given that we obtain a large enough
number of samples.

Note that it is easy to handle missing data when using this
model (in contrast to other methods presented in the related
work section), as we can model the missing data as latent
variables which themselves can be inferred in the Gibbs
sampling algorithm. The conditional probability for f̂ij , in
case it needs to be sampled, is as follows:

P (f̂ij | ·) ∝ e
1{f̂ij 6=`i}

j (1− ej)
1{f̂ij=`i} . (7)

4.2. Coupled Bayesian Error Estimation

Up to this point we have assumed that there is a single
target function and multiple approximations to that func-
tion. More generally though, we might have multiple tar-
get functions, or problem settings, and a common set of
learning algorithms used for learning each of these. For

IMPLICIT USE OF AGREEMENT RATES
Many of the papers from section 2 propose using agree-
ment rates between the function approximations in order
to estimate the error rates of these functions. By looking
at equations 3, 4, 5, and 6 we can see that our method
is also implicitly using agreement rates in order to esti-
mate function error rates. We are using the agreement
between the function outputs and the true underlying la-
bels in order to infer both the error rates of our functions
and those labels, jointly. This fundamental connection
further supports the argument made in (Platanios et al.,
2014) relating agreement and correctness, in that un-
der certain conditions, agreement of several functions
implies correctness of these functions.
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example, this is the case in NELL, where the different tar-
get functions correspond to different boolean classification
problems (e.g., classifying NPs as cities or not, as animals
or not, etc.). Multiple learning methods are utilized to ap-
proximate each one of those target functions (e.g., a classi-
fier based on the NP morphology, a second classifier based
on the NP contexts, etc.), so that each such classification
problem, or target function, corresponds to an instance of
our “multiple approximations” problem setting.

It is reasonable to assume that there are some structural
dependencies between our function approximations that
could result in similar behavior (i.e., similar error rate
across multiple domains). Note that this is not an unrea-
sonable assumption because these classifiers use the same
set of features across all domains. If that is indeed the case,
then sharing information across domains might prove use-
ful. That is our motivation for the extension to the model
introduced earlier, that we present in this section. The main
idea is that we want to cluster our domains based on the dis-
tribution of the error rates of our function approximations.
However, we do not know the number of clusters needed,
and that is why we resorted to Bayesian nonparametrics;
we want to infer the necessary number of clusters “auto-
matically”. More specifically, we decided to use a Dirich-
let process (DP) prior. Note that this model is different than
the one proposed in (Moreno et al., 2015), in that in that pa-
per the authors propose clustering the classifiers while only
considering a single domain, instead of clustering the do-
mains, as we do. In the following two sections we provide
an introduction to DPs and introduce our improved model.

Dirichlet Process (DP): The Dirichlet process is a dis-
tribution over discrete probability measures (i.e., atoms),
G =

∑∞
k=1 πkδθk , with countably infinite support, where

the finite-dimensional marginals are distributed according
to a finite Dirichlet distribution (Ferguson, 1973). It is
parametrized by a base probability measure H , which de-
termines the distribution of the atom locations, and a con-
centration parameter α > 0 that is proportional to the in-
verse variance of the atom locations. The DP can be used
as the distribution over mixing measures in a nonparamet-
ric mixture model. In the DP mixture model (Antoniak,
1974), data samples, {xi}ni=1, are assumed to be generated
according to the following process:

G ∼ DP(α,H) , θi ∼ G , xi ∼ f(θi) . (8)

While the DP allows for an infinite number of clusters a
priori, any finite dataset will be modeled using a finite, but
random, number of clusters.

Model: In the definition of our model we are going to
use the Chinese restaurant process (CRP) representation of
the DP (Blackwell & MacQueen, 1973), because that form
is most appropriate for deriving the Gibbs sampling equa-
tions to perform inference, later on. Following from the
intuition provided in the beginning of section 4.2, we now
have a problem setting in which we have several different

pd
αp

βp
`di fdij edj zd

CRP(α)
φl

αe

βe

Sd

∞

N

D

pd ∼ Beta(αp, βp), for d = 1, . . . , D,

`di ∼ Bernoulli(pd), for i = 1, . . . , Sd, and d = 1, . . . , D,

[φl]j ∼ Beta(αe, βe), for j = 1, . . . , N, and l = 1, . . . ,∞,
zd ∼ CRP(α), for d = 1, . . . , D,

edj = [φzd ]j , for j = 1, . . . , N, and d = 1, . . . , D,

f̂dij =

{
`di , with probability 1− edj ,
1− `di , otherwise.

Figure 2: Graphical model for coupled error rate estima-
tion using only unlabeled data. The coupling comes from
the use of a Dirichlet process prior to group problem do-
mains, and share information within each group. Note that
CRP(α) denotes the Chinese restaurant process (CRP) with
concentration parameter α.

domains, d = 1, . . . , D, where for each domain d, we have
a set of function approximations, f̂d1 , . . . , f̂

d
N , to some tar-

get boolean classification function, fd : X → {0, 1}, and
we wish to know the true accuracies of each of these dif-
ferent approximations, using only unlabeled data, as well
as the single most likely single label, meaning the most
likely response of the true underlying function f . We define
the following generative process to do that, where we are
only given D sets of unlabeled data {Xd

1 , . . . , X
d
Sd}Dd=1,

one for each domain, and the function approximations
{f̂d1 , . . . , f̂dN}Dd=1:

1. Draw an infinite number of potential error rates, φl,
for our function approximations. For each φl, for j =
1, . . . , N , draw an error rate [φl]j ∼ Beta(αe, βe).

2. For each domain d = 1, . . . , D:

(a) Draw pd ∼ Beta(αp, βp), representing the prior
probability for the true underlying function output
being equal to 1, over all possible inputs, for do-
main d.

(b) For each data example, Xd
i where i = 1, . . . , Sd,

draw a label `di ∼ Bernoulli(pd). This is the the
true label, fd(Xd

i ).
(c) Draw a cluster assignment, zd ∼ CRP(α).
(d) For each function approximation, f̂dj , define the er-
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ror rate as edj = [φzd ]j .
(e) For each data example, Xd

i , and function approxi-
mation, f̂dj , draw an output label, f̂dij , according to
the following distribution:

f̂dij =

{
`di , with probability 1− edj ,
1− `di , otherwise.

(9)

This output label corresponds to f̂dj (X
d
i ).

A graphical representation of the model, along with a com-
pact definition, is shown in figure 2.

In order to perform inference for this model we also use
Gibbs sampling. For sampling from the DP we use the ap-
proach described in (Neal, 2000). In order to get fast con-
vergence, we first marginalize out of the conditional proba-
bilities φl and sample the rest of the variables sequentially
for a few iterations (i.e., we perform collapsed Gibbs sam-
pling), and then we start sampling the φl along with the
other random variables, using the original conditional prob-
abilities. For brevity, the conditional probabilities for this
model are included in the supplementary material of this
paper. They are derived directly from the model definition.

4.3. Hierarchical Coupled Bayesian Error Estimation

An important factor in estimating error rates using unla-
beled data is the dependencies between our function ap-
proximations (see e.g., section 2). So far in our models,
we share little information across those functions when es-
timating their error rates. One natural extension to our cou-
pled error estimation model, which allows sharing more in-
formation across functions, is to use a hierarchical Dirich-
let process (HDP) prior. This prior would allow us to first
cluster the domain (i.e., as we are doing in the DP model),
and then, for each domain cluster, to also cluster the clas-
sifiers, and to share the classifier clusters between different
domain clusters. In the following two sections we provide
an introduction to HDPs and we introduce our hierarchical
coupled error estimation model.

Hierarchical Dirichlet Process (HDP): Hierarchical
Dirichlet processes (HDPs) (Teh et al., 2006) extend the
DP to be able to model grouped data. The HDP is a distri-
bution over probability distributions Gm, m = 1, . . . ,M ,
each of which is conditionally distributed according to a
DP. These distributions are coupled using a discrete com-
mon base measure, which is also distributed according to a
DP. Each distributionGm can be used to model a collection
of observations {xmi }

Nm
i=1, as follows:

G ∼ DP(γ,H) , Gm ∼ DP(α,G) ,
θmi ∼ Gm , xmi ∼ f(θmi ) .

(10)

Each observation within a group is a draw from a mixture
model, and mixture components can be shared between
groups. The intuition behind this property of the HDP is

pd
αp

βp
`di fdij edj zdj

kdm

CRP(γ)

CRPd(α)

φl
αe

βe

Sd

∞

∞

N

D

pd ∼ Beta(αp, βp), for d = 1, . . . , D,

`di ∼ Bernoulli(pd), for i = 1, . . . , Sd, and d = 1, . . . , D,

φl ∼ Beta(αe, βe), for l = 1, . . . ,∞,
kdm ∼ CRP(γ), for d = 1, . . . , D, and m = 1, . . . ,∞,
zdj ∼ CRPd(α), for d = 1, . . . , D, and j = 1, . . . , N,

edj = φkd
zd
j

, for j = 1, . . . , N, and d = 1, . . . , D,

f̂dij =

{
`di , with probability 1− edj ,
1− `di , otherwise.

Figure 3: Graphical model for hierarchical coupled error
rate estimation using only unlabeled data. The hierarchi-
cal coupling comes from the use of a hierarchical Dirichlet
process prior to cluster problem domains and functions and
share information within each cluster. Note that CRPd(α)
denotes a separate Chinese restaurant process (CRP) per
domain d, with concentration parameter α.

that, due to the base measure of the child DPs being dis-
crete, they necessarily share atoms. Thus, as desired, the
mixture models in the different groups may share mixture
components.

Model: To extend our model for coupled error rate esti-
mation to allow sharing of information across functions by
using an HDP, as described at the beginning of section 4.3,
we can define the following generative process for our data:

1. Draw an infinite number of potential error rates, φl ∼
Beta(αe, βe), for our function approximations.

2. For each domain d = 1, . . . , D:
(a) Draw pd ∼ Beta(αp, βp), as in the coupled error

estimation model.
(b) For each data example, Xd

i where i = 1, . . . , Sd,
draw a label `di ∼ Bernoulli(pd), as in the coupled
error estimation model.

(c) Draw an infinite number of potential cluster as-



Estimating Accuracy from Unlabeled Data: A Bayesian Approach

signments for each function approximation, kdm ∼
CRP(γ).

(d) For each function approximation, j = 1, . . . , N :
i. Draw a cluster assignment, zdj ∼ CRPd(α),

from the CRP corresponding to the current do-
main.

ii. Define the error rate as edj = φtdj , tdj = kd
zdj

.

iii. For each data example, Xd
i , draw an output la-

bel, f̂dij , according to the following distribution:

f̂dij =

{
`di , with probability 1− edj ,
1− `di , otherwise.

(11)

This output label corresponds to f̂dj (X
d
i ).

A graphical representation of the model, along with a com-
pact definition, is shown in figure 3.

In order to perform inference for this model we also use
Gibbs sampling. For sampling from the HDP we use the
approach described in (Teh et al., 2006). We also use col-
lapsed Gibbs sampling for the initial sampling phase, as
we did for the coupled error estimation model. For brevity,
the conditional probabilities for this model are included in
the supplementary material of this paper. They are derived
directly from the model definition.

5. Experiments
We first carried out the experiments of (Platanios et al.,
2014), so that we can compare the accuracy of our meth-
ods in estimating error rates against theirs. In order to ex-
plore the ability of the proposed methods to estimate error
rates in realistic settings without domain-specific tuning,
two very different data sets were used in those experiments.
In the next two paragraphs we describe the two data sets we
used, and in the sections that follow we describe the exper-
iments we carried out and the results we obtained (the code
for our methods and experiments, and the data we used can
be found at http://platanios.org/code/).

NELL Data Set: This data set consists of data samples
where four binary logistic regression (LR) classifiers – each
one using a different set of features – were used to predict
whether a NP belongs to a specific category in the NELL
ontology (e.g., is Monongahela a river?). The four classi-
fiers used were the following: (1) ADJ: Uses as features the
adjectives that co-occur with the NP over millions of web
pages, (2) CMC: Considers orthographic features of the
NP (e.g., does the NP end with the letter string “burgh”?
– more details can be found in (Carlson et al., 2010) and
(Mitchell et al., 2015), (3) CPL: Uses as features words and
phrases that appear with the NP, and (4) VERB: Uses as
features verbs that appear with the NP. The domain in this
case is defined by the category (e.g., “beverage” and “river”
are two different domains) and we have about∼ 20, 000 la-
beled examples available per category.

Brain Data Set: Functional Magnetic Resonance Imaging
(fMRI) data were collected while 8 subjects read a chapter
from a popular novel (Rowling, 2012), one word at a time.
This data set consists of data samples where 11 classifiers
were used to predict which of two 40 second long story pas-
sages correspond to an unlabeled 40 second time series of
fMRI neural activity. Each classifier is making its predic-
tion based on a different representation of the text passage
(e.g., the number of letters in each word of the text passage,
versus the part of speech of each word, versus emotions ex-
perienced by characters in the story, etc.). The domain in
this case is defined by 11 different locations in the brain,
for each one of which we have 924 labeled examples. Ad-
ditional details can be found in (Wehbe et al., 2014).

Experiments Description: We run two experiments for
each data set: one for evaluating the accuracy of the pro-
posed methods in estimating classifier error rates, and one
for evaluating the accuracy of the labels inferred by our
methods. We describe each one of these two experiments
in the following sections.

Error Rates Experiment: For this experiment, we use the
data without their labels to estimate error rates and, at the
same time, we use the labels of the data in order to compute
an estimate of the true error rate. The way we compute
the estimate of the true error rate is by simply computing
the sample error rate over the labeled data (i.e., the ratio
of wrong labels to total number of samples, which can be
computed because the true labels are known). From now on
we shall refer to this estimate of the true error rates as the
“true error rates”. The evaluation metric we use to report
our results is the mean squared error (MSE) of the error rate
estimates from the true error rates. A low MSE indicates
that our method is performing well.

Labels Experiment: With this experiment we want to eval-
uate how accurate the inferred labels are, and compare our
accuracy to that of other methods that one can use. The
evaluation metric we use to report our results is the mean
absolute deviation (MAD) of the label estimates from the
true labels that are known, which is simply the accuracy of
the labels (i.e., the ratio of correct labels to total number of
labels).

Baselines: We note that for some of the methods we com-
pare against that do not explicitly estimate error rates, but
rather combine the classifier outputs to produce a single la-
bel, we produce an estimate of the error rate using these
labels and compare against that estimate. The methods that
we compare against are the following:

1. Majority Vote (MAJ): The most intuitive method to use.
It consists of simply taking as the combined label the
most common label among the classifier outputs.

2. DW: Method of Dawid & Skene (1979). Results for
this method have been omitted from our figures because
they are several orders of magnitude worse than those
that have been included.

http://platanios.org/code/
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Figure 4: Mean squared error (MSE) of the error rate and mean absolute deviation (MAD) of the label estimates for our
methods (plotted in red color) and the methods that we are competing against (plotted in blue and green color). The
lower the MSE (i.e., the shorter the bar), the better the result is. It clear from these plots that our methods outperform the
competing methods in all cases. Note that there are no results for the AR method because the optimization solver used
failed when solving a problem with that many constraints (i.e., size of power set of 11 classifiers. Error bars have been
omitted from these plots because they were negligibly small (∼ 2 orders of magnitude smaller than the reported values).

3. GIBBS-SVM and GD-SVM: Methods of Tian & Zhu
(2015).

4. Agreement Rates (AR): Method of Platanios et al.
(2014). It estimates error rates but does not infer the
combined label. For that reason, we use a weighted
majority vote, where the classifiers predictions are
weighted according to their error rates, in order to pro-
duce a single output label.

5. cBCC: Method of Moreno et al. (2015) adapted to
model error rates instead of the full confusion matrix.

Setup: For all our experiments and all three of our mod-
els, the Gibbs sampling inference procedure we used con-
sisted of the following steps: (i) we sample 4, 000 samples
that we throw away (i.e., burn-in samples), (ii) we sam-
ple 2, 000 samples and keep every 10th sample in order to
reduce the dependencies between our samples introduced
by the sequential nature of the procedure, and (iii) we ob-
tain our error rate and label estimates by averaging over
the samples that we kept. We repeated each experiment 10
times and we report the mean of the evaluation metrics. We
also computed the standard deviation of those metrics but
we decided to omit it from our figures because it was ∼ 2
orders of magnitude smaller than the actual mean. Regard-
ing the hyperparameters of our models, we set them as:

• Labels Prior: αp and βp are both set to 1, and so the prior
is uniform and uninformative.

• Error Rates Prior: αe is set to 1 and βe is set to 10. We
selected those values in order to “avoid” the identifiabil-
ity problem related to the error rates that (Platanios et al.,
2014) describe. This prior encodes our assumption that
more than half of our classifiers have error rate lower
than 0.5.

• DP and HDP Concentration Parameters: We carried out
several experiments with many logarithmically spaced
values for α and γ (all combinations of pairs of values
were considered for the HDP) and we computed the log-
likelihood for a held-out data set1, for each such exper-
iment. The results that we report for the DP and HDP
models are those corresponding to the experiment that
resulted in the highest log-likelihood value for the held-
out data set.

The results we obtained from all of our experiments are
summarized in figure 4 and are discussed in the following
sections. In what that follows, we use the following abbre-
viations for our models: BEE is used to refer to our error
estimation model of section 4.1, CBEE is used to refer to

1The held-out data set consisted of 10% of the total amount of
data we had available, which was randomly sampled.
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our coupled error estimation model of section 4.2, and fi-
nally, HCBEE is used to refer to our hierarchical coupled
error estimation model of section 4.3.

Results: As is easily evident from figures 4a and 4b,
HCBEE always outperforms the competing methods. One
thing that we expect to see in our results, in the presence of
dependencies across domains and classifiers, is that CBEE
and HCBEE are better than BEE when we have a small
amount of data, because that is when sharing information
becomes useful. When we have a large amount of data, we
expect that the performance of the simple BEE model will
be similar to its extensions, since for CBEE and HCEE, the
atoms may not be clustered because there may be enough
data per atom so that no sharing of information is neces-
sary. That is evident in the results that we obtained.

For all experiments, where we use the all data samples we
see that our three proposed methods perform equivalently
well and always beat the competing methods. The fact that
the coupling introduced by the nonparametric extensions to
the simple model does not offer an improvement in perfor-
mance can be attributed to the fact that for all those exper-
iments we have enough data for each error rate to be mod-
eled separately and not be clustered. We note that the plots
in figures 4a and 4b are using a logarithmic scale, mean-
ing that our methods offer significant improvement over the
current state-of-the-art. The results for our three models are
not exactly identical most probably due to the fact that they
use different priors that allow different levels of informa-
tion sharing. In the case of limited data samples (i.e., 10%
of the data samples in our data sets), the HCBEE method
performs the best, followed by CBEE. This supports our
argument, that our coupled error estimation methods are
more powerful in cases where a limited amount of data is
available. Despite the fact that this is not really the case
with the data for NELL, or other web-scale projects, it is
a common scenario that is encountered with other types of
data, such as neuroscience and biology data, for example.
In such cases even unlabeled data can be really hard and
expensive to obtain.

We note that cBCC is the closest method to our models
and also beats alternative methods in most cases. However,
our methods always outperform it. That is probably due to
the fact that this model only allows sharing of information
among different classifiers (i.e., clusters the classifiers), but
none of our data sets involves a high number of classifiers.

6. Extensions and Future Work
We first note that, even though we do not consider this set-
ting in our paper, the core idea behind our proposed meth-
ods can easily be extended to model the full confusion ma-
trix for general discrete labels (i.e., instead of binary labels
that we consider in this paper). This can be useful in sev-
eral applications, when one needs to know how the error
rate decomposes into precision and recall, for example.

Interesting directions for future work include taking into
account known constraints between the domains. For ex-
ample, in the case of NELL, we have domains such as “an-
imal” and “person”. We might already know that certain
domains are mutually exclusive, for example. That would
be useful because in this case we would know that if two
classifiers predict that the label for some input is positive
for both domains, then we know that at least one of them
has to be making an error. It would thus be interesting to
extend our models to use information provided by logical
constraints, such as mutual exclusion and subsumption. In
the case of NELL, we could use the estimated error rates
in combination with a framework such as probabilistic soft
logic (PSL) (Bröcheler et al., 2010; Pujara et al., 2013) in
order to improve the accuracy of the system.

There are also certain other potential future directions for
this work. It would be interesting to explore generalizations
of our models to non-boolean, discrete-valued functions, or
even to real-valued functions. Furthermore, we would like
to explore ways in which we can use the error rate esti-
mates in order to improve the performance of our function
approximations. As already mentioned in some of the re-
lated work, that would constitute a first step towards devel-
oping a self-reflection framework for autonomous learning
systems. In this context, we could try using our estimates in
order to develop an effective active learning method, using
the ideas discussed in the last paragraph of section 3.

7. Conclusion
We have introduced a Bayesian approach to estimate the er-
ror rate of each of several approximations to the same func-
tion, using only unlabeled data. Our approach also allows
inferring the posterior distribution of the true label (i.e., the
true underlying function output), by combining the outputs
of those function approximations while accounting for their
error rates. We first proposed a simple generative model
for error estimation. This model is implicitly using the
functions’ agreement rates over unlabeled data. We then
considered the setting where we might have multiple target
functions, or domains, and a common set of learning algo-
rithms used for learning each of these. We provided an ex-
tension to our simple model that allows grouping such do-
mains and sharing information within them. Finally, con-
sidering the fact that the dependencies between function
approximations are an important factor in estimating error
rates using unlabeled data, we proposed a second extension
to our model, that further clusters the function approxima-
tions and allows sharing of these clusters across different
domain groups. In order to explore the ability of the pro-
posed methods to estimate error rates in realistic settings
without domain-specific tuning, we used two very different
data sets in our experiments. Our methods were shown to
outperform the current state-of-the-art, in both the tasks of
estimating error rates and inferring the most likely single
label, using only unlabeled data.
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Bröcheler, Matthias, Mihalkova, Lilyana, and Getoor, Lise.
Probabilistic Similarity Logic. In Conference on Uncer-
tainty in Artificial Intelligence, pp. 73–82, 2010.

Carlson, Andrew, Settles, Burr, Betteridge, Justin, Kisiel,
Bryan, Hruschka Jr, Estevam R, and Mitchell, Tom M.
Toward an Architecture for Never-Ending Language
Learning. In Conference on Artificial Intelligence
(AAAI), pp. 1–8, 2010.

Collins, John and Huynh, Minh. Estimation of Diagnostic
Test Accuracy Without Full Verification: A Review of
Latent Class Methods. Statistics in Medicine, 33(24):
4141–4169, June 2014.

Collins, Michael and Singer, Yoram. Unsupervised Models
for Named Entity Classification. In Joint Conference on
Empirical Methods in Natural Language Processing and
Very Large Corpora, pp. 1–11, 1999.

Dasgupta, Sanjoy, Littman, Michael L, and McAllester,
David. PAC Generalization Bounds for Co-training. In
Neural Information Processing Systems, pp. 375–382,
2001.

Dawid, A P and Skene, A M. Maximum Likelihood Es-
timation of Observer Error-Rates Using the EM Algo-
rithm. Journal of the Royal Statistical Society. Series C
(Applied Statistics), 28(1):20–28, January 1979.

Ferguson, Thomas S. A Bayesian Analysis of Some Non-
parametric Problems. The Annals of Statistics, 1(2):209–
230, March 1973.

Geman, Stuart and Geman, Donald. Stochastic Relaxation,
Gibbs Distributions, and the Bayesian Restoration of Im-
ages. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 6(6):721–741, November 1984. ISSN
0162-8828.

Madani, Omid, Pennock, David M, and Flake, Gary W. Co-
Validation: Using Model Disagreement on Unlabeled
Data to Validate Classification Algorithms. In Neural
Information Processing Systems, pp. 1–8, 2004.

Mitchell, Tom M, Cohen, William W, Hruschka Jr, Es-
tevam R, Pratim Talukdar, Partha, Betteridge, Justin,
Carlson, Andrew, Dalvi, Bhanava, Gardner, Matt,
Kisiel, Bryan, Krishnamurthy, Jayant, Lao, Ni, Mazaitis,
Kathryn, Mohamed, Thahir P, Nakashole, Ndapakula,
Platanios, Emmanouil Antonios, Ritter, Alan, Samadi,
Mehdi, Settles, Burr, Wang, Richard C, Wijaya, Derry,
Gupta, Abhinav, Chen, Xinlei, Saparov, Abulhair,
Greaves, Malcolm, and Welling, Joel. Never-Ending
Learning. In Association for the Advancement of Arti-
ficial Intelligence, pp. 1–9, 2015.

Moreno, Pablo G, Artés-Rodrı́guez, Antonio, Teh,
Yee Whye, and Perez-Cruz, Fernando. Bayesian Non-
parametric Crowdsourcing. Journal of Machine Learn-
ing Research, 16:1–21, August 2015.

Neal, Radford M. Markov Chain Sampling Methods for
Dirichlet Process Mixture Models. Journal of Compu-
tational and Graphical Statistics, 9(2):249–265, June
2000.

Parisi, Fabio, Strino, Francesco, Nadler, Boaz, and Kluger,
Yuval. Ranking and combining multiple predictors with-
out labeled data. Proceedings of the National Academy
of Sciences, pp. 1–28, January 2014.

Platanios, Emmanouil Antonios, Blum, Avrim, and
Mitchell, Tom M. Estimating Accuracy from Unlabeled
Data. In Conference on Uncertainty in Artificial Intelli-
gence, pp. 1–10, 2014.

Pujara, Jay, Miao, Hui, Getoor, Lise, and Cohen,
William W. Knowledge Graph Identification. Inter-
national Semantic Web Conference, 8218(Chapter 34):
542–557, 2013.

Rowling, J.K. Harry Potter and the Sorcerer’s Stone.
Harry Potter US. Pottermore Limited, 2012. ISBN
9781781100271.

Schuurmans, Dale, Southey, Finnegan, Wilkinson, Dana,
and Guo, Yuhong. Metric-Based Approaches for Semi-
Supervised Regression and Classification. In Semi-
Supervised Learning, pp. 1–31. 2006.



Estimating Accuracy from Unlabeled Data: A Bayesian Approach

Teh, Yee Whye, Jordan, Michael I, Beal, Matthew J, and
Blei, David M. Hierarchical Dirichlet Processes. Journal
of the American Statistical Association, 101(476):1566–
1581, December 2006.

Tian, Tian and Zhu, Jun. Max-Margin Majority Voting for
Learning from Crowds. In Neural Information Process-
ing Systems, pp. 1–9, 2015.

Wehbe, Leila, Murphy, Brian, Talukdar, Partha, Fyshe,
Alona, Ramdas, Aaditya, and Mitchell, Tom. Predicting
brain activity during story processing. in review, 2014.


	Introduction
	Related Work
	Motivation and Intuition
	Proposed Methods
	Bayesian Error Estimation
	Coupled Bayesian Error Estimation
	Hierarchical Coupled Bayesian Error Estimation

	Experiments
	Extensions and Future Work
	Conclusion

