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Abstract
Structured prediction is ubiquitous in applications
of machine learning such as knowledge extrac-
tion and natural language processing. Structure
often can be formulated in terms of logical con-
straints. We consider the question of how to per-
form efficient active learning in the presence of
logical constraints among variables inferred by
different classifiers. We propose several methods
and provide theoretical results that demonstrate
the inappropriateness of employing uncertainty
guided sampling, a commonly used active learn-
ing method. Furthermore, experiments on ten
different datasets demonstrate that the methods
significantly outperform alternatives in practice.
The results are of practical significance in situa-
tions where labeled data is scarce.

1. Introduction
Tasks which involve learning several classifiers whose out-
puts are tied together by logical constraints are abundant
in machine learning. As an example, we may have two
classifiers in the Never Ending Language Learning (NELL)
project (Mitchell et al., 2015) which predict whether noun
phrases represent animals or cities, respectively. In this case,
the outputs of the two classifiers are mutually exclusive.
Many such tasks hinge on the training of a large number of
classifiers in situations where obtaining labeled data is ex-
pensive. The difficulty of acquiring labels leads to the com-
mon approach (highlighted in Figure 1) of performing an
initial training of classifiers with a small number of labeled
examples, and then iteratively identifying the most valuable
additional labels to acquire, followed by the re-training of
the classifiers. We seek methods that are capable of per-
forming such active learning (Settles, 2012), an instance of
semi-supervised learning. In this paper, we propose meth-
ods for active learning that share a common underlying goal:
efficient identification of the most valuable labels to acquire
in the presence of logical constraints among the outputs of
classifiers being trained. Examples of such constraints are
mutual exclusion (e.g., in multi-class/one-vs-all classifica-
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Figure 1: Illustration of active learning in an interdependent
multiple classifier setting.

tion) and subsumption (e.g., in hierarchical classification)
among target variables. In active learning for mutual exclu-
sion and subsumption, we need to consider the complexities
of behavior arising in the interactions among the linked
classifiers. We shall provide theoretical justification for the
proposed methods that resonates with intuition. As we will
show, the results challenge the core idea behind uncertainty
guided sampling, a method in common practice.

We motivate our work with challenges in information ex-
traction, where noun phrases are mapped to various cat-
egories (e.g., animal, and bird) and relations (e.g.,
animalEatsFood). It is easy to see how these categories
and relations can be tied through logical constraints. For
example, one might say that animal and location are
mutually exclusive, and animal subsumes bird. We con-
sider examples highlighted by work on the NELL project
(Mitchell et al., 2015). NELL currently performs over 2,500
learning tasks and it is thus too expensive to obtain enough
labeled data for each task separately. The ability to rank
examples by the utility of discovering their labels would
enable the system to more efficiently allocate and use re-
sources available for labeling. Our goal in this paper is to
provide systems such as NELL with this ability, such that
their learning rate would be significantly increased with
respect to the resources available for labeling.
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2. Related Work
The literature covers many projects in the realms of active
learning (Settles, 2012; Ruvolo and Eaton, 2013) and deci-
sion theory (e.g., the core concept of value of information
and its use in guiding the collection of examples) (Kapoor
et al., 2007; Krause and Guestrin, 2009). Related work on
computing the value of information for inference that lever-
ages structural information includes an effort showing how
the topology of influence diagrams could be used to assert
an ordering over the value of information for variables (Poh
and Horvitz, 1996). However, most existing approaches
to active information gathering for machine learning are
directed at collecting single labels for one classifier. Fur-
thermore, even approaches that deal with settings involving
multiple labels do not make use of logical constraints that
may exist among labels (Reichart et al., 2008; Zhao et al.,
2015). Work in the area of semi-supervised learning makes
it clear that such constraints are present in many practical
settings and that they can indeed prove useful if used appro-
priately (Chang et al., 2007; 2008; Mitchell et al., 2015).

There have been a few approaches that make use of such
constraints. First, we note that query-by-committee (QBC)
can be viewed as a special case of our framework, where
the logical constraint is that committee members must agree.
Settles and Craven (2008) propose approaches to perform
active learning for sequence labeling tasks, including uncer-
tainty sampling and QBC. Culotta and McCallum (2005)
consider adding constraints to such tasks. To the best of our
knowledge, they are the first to consider general constraints.
In distinction to this prior work, we do not focus on the
difficulty of each labeling task. We consider a wider range
of tasks. Culotta and McCallum present only one instan-
tiation of our more general formulation. Luo et al. (2013)
use uncertainty sampling, where probabilities are computed
using classifiers that account for constraints. Roth and Small
(2008) score instances using the margin of learned classi-
fiers and in the case of binary classification, margin-based
active learning is equivalent to uncertainty sampling. Bilgic
et al. (2010) consider dependencies among input instances
and their labels. They cluster instances and look at disagree-
ments of two kinds of classifiers over the clusters. Other
methods that use “side” information in active learning in-
clude those of Kapoor and Baker (2009), Wallace et al.
(2010), and Angeli et al. (2014).

Our method considers the important and common case
where there are logical constraints over the output space,
such as mutual exclusion and subsumption. The ubiquitous
nature of such logic relationships creates a need for them to
be addressed “head on”. The previously mentioned related
work only deals with other kinds of probabilistic constraints.
Harpale (2012) and Zhang (2010) have considered this set-
ting, but they fail to provide theoretical justifications nor
provide deep experimental support. Furthermore both ap-
proaches can be seen as separate instantiations of our more
general framework, for which we also provide a formal

analysis along with an extensive experimental evaluation.

3. Proposed Methods
We now provide a description of methods for performing
active learning. The methods select examples to be labeled
before each re-training step (i.e., the red box in Figure 1).
Let us consider a setting where we have a set of binary
labels Y i

k ∈ {0, 1}, for k = 1, . . . ,K and i = 1, . . . , N ,
for a provided set of instances X1, . . . , XN . Y i

k denotes
whether instance Xi belongs to class k. One example would
be where Xi represents a particular noun phrase (NP) and
Y i
k is a particular label for that NP, indicating whether it is a

city or not. There exists a set of logical constraints among
the K labels for each instance which determine whether
an assignment of values to those labels is valid or not. Let
the marginal probability of each label being positive be
defined as pik , PXi∼D(Y

i
k = 1), for k = 1, . . . ,K and

i = 1, . . . , N , where D is the distribution of the instances
X1, . . . , XN . Given a set of observed labels (which could
be empty) and these marginal probabilities, we want to
determine which label1 to request in the active learning
process in order to gain the most information. Thus, we use
a scoring function to score each unobserved label based on
how much information is gained by observing it, and we
then pick the label with the highest such score. We note that
information gain can be defined in many ways depending
on the task at hand and the evaluation metric that is being
used. Our approach is initially motivated by the loose and
possibly naïve definition of information gain as the expected
number of labels one obtains after asking for a single label
(i.e., due to the constraints among the labels).

We note that the common strategy of uncertainty guided
sampling for allocating labeling effort uses the entropy of a
label as its scoring function. That is:

Sentropy(Y
i
k ) , −pik log pik − (1− pik) log(1− pik). (1)

Thus, this function can be thought of as scoring each label
based only on its own uncertainty ignoring any dependen-
cies among the labels. Our proposed methods make use of
logical constraints among the labels, thus considering key
dependencies. We therefore expect them to perform better
in practice.

3.1. A Simple Constraint: Mutual Exclusion

Let us first consider a simple, yet powerful and common
logical constraint among labels: mutual exclusion. We con-
sider a setting where, for each value of i (i.e., instance), all
labels (i.e., Y i

1 , . . . , Y
i
K) are mutually exclusive with one

another. This means that, for each instance, at most one
label can be positive. It is easy to see that, if we discover
that a label for a specific instance is positive, then all other

1Note that the word “label” here refers to a particular label-
instance pair (i.e., we ask for a single label of a single instance at a
time). This is the convention we use throughout this paper.
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labels must be negative for that instance. However, if the
answer is negative, then we cannot infer the value of any
other label. Thus, intuitively we see that it might make sense
to ask for the label with the highest marginal probability of
being equal to 1 (i.e., the Y i

k with the highest probability
pik). We now discuss this approach and provide theoretical
justification for this intuition. We start by suggesting the
following scoring function:

Sprobability(Y
i
k ) , pik. (2)

For the following theoretical justification, we shall ignore
the instance superscript (i.e., i) and consider the case where
there is only a single instance X . We shall propose a theo-
rem related to this scoring function, but first we will state a
lemma that will be used in the forthcoming proof:

Lemma 1. Let x ∈ [0, 1], and c ∈ [0, 1 − x]. Then, the
following function is monotonic with respect to x: f(x) =
(1− x− c) log (1− x− c)− (1− x) log (1− x).

Proof. We have that ∂f(x)
∂x = log (1− x)− log (1− x− c)

and since the logarithm is a monotonic function, we know
that ∂f(x)

∂x ≥ 0. Thus, f(x) is monotonic.

Theorem 1. Given a set of mutually exclusive labels, the
scoring function in Equation 2 induces the same ranking of
labels as the information-theoretic information gain.

Proof. Due to the mutual exclusion constraint, we have
PX∼D({Yk = 0 for k = 1, . . . ,K}) = 1 −

∑K
k=1 pk. For

notational convenience, let us denote this quantity by p0
and also omit the X ∼ D subscript from the probability
operator notation henceforth. Now, note that:

P(y−k) = P(y−k ∧ Yk = 1) + P(y−k ∧ Yk = 0),

=


0 , if y−k has more than one 1s,
pl , if yl = 1 for l 6= k,

pk + p0 , otherwise,

where y−k refers to an assignment of values to all labels
Yl, where l = 1, . . . ,K, and l 6= k, and yl refers to an as-
signment of Yl. Let us also denote the information-theoretic
information gain of variable Yk by I(Yk). We then have
that if pk ≥ pl, for some k 6= l, then:

I(Yk)− I(Yl)

= H(Y−k)−H(Y−k | Yk)−H(Y−l) +H(Y−l | Yl),

= H(Y−k) +H(Yk)−H(Y−l)−H(Yl),

= −
∑
y−k

P(y−k) logP(y−k)− pk log pk,

+
∑
y−l

P(y−l) logP(y−l) + pl log pl,

− (1− pk) log (1− pk) + (1− pl) log (1− pl),

= (pl + p0) log (pl + p0)− (1− pk) log (1− pk),

− (pk + p0) log (pk + p0) + (1− pl) log (1− pl),

= (1− pk − c) log (1− pk − c)− (1− pk) log (1− pk),

− (1− pl − c) log (1− pl − c) + (1− pl) log (1− pl),

≥ 0,

where H(Yk) corresponds to the entropy of the Yk vari-
able, H(Y−k) corresponds to the entropy of all vari-
ables Yl, where l = 1, . . . ,K and l 6= k, and
H(p) , −p log p− (1− p) log (1− p). The sums are
over all possible assignments of the corresponding vari-
ables. The last step follows from Lemma 1, where
c =

∑K
k′=1,k′ 6=k,l pk′ . The above inequality implies that

the ranking of labels induced by the information gain I(Yk)
is the same as the ranking induced by using the scoring
function Sprobability(Y

i
k ) and the proof is complete.

One of the most interesting consequences of Theorem 1 is
that we now have a very efficient way to rank labels based
on their information gain. Also note that more often than
not, classification systems are evaluated based on the area
under the precision-recall curve (AUC). Furthermore, one
might care about maximizing the number of “gold” labels,
meaning labels that are guaranteed to be correct. Intuitively,
the AUC increases with the number of “gold” labels. We
highlight the fact that the probability scoring function of
Equation 2 was motivated by picking the label that is most
likely to provide the greatest number of “gold” labels (i.e.,
labels that are fixed to 0).

We note that the scoring function Sprobability(Y
i
k ) assigns

higher score to labels that are more certainly positive than
to more uncertain labels. This is in contrast to uncertainty
guided sampling and thus highlights the importance of The-
orem 1. It also demonstrates that positive examples can,
in some cases, be much more useful and informative than
negative examples. Sharma and Bilgic (2013) discuss the
sources of uncertainty and reinforce our argument about
the ineffectiveness of naive uncertainty sampling for some
kinds of logical constraints.

We would like to emphasize the relationship between using
Equation 2 as the scoring function, as proposed in Theo-
rem 1, and using entropy (i.e., Equation 1) as the scoring
function, as is done in uncertainty guided sampling. The
following proposition and corollary of our theorem describe
this relationship more precisely.

Proposition 1. When:

argmax
k=1,...,K,
i=1,...,N

pik = argmin
k=1,...,K,
i=1,...,N

|pik − 0.5|, (3)

the probability scoring function of Equation 2 is equivalent
to the entropy scoring function of Equation 1, which is used
by uncertainty guided sampling.

Proof. The proof follows immediately by noticing that for
pik ∈ [0, 1], the following holds:

argmax
k=1,...,K,
i=1,...,N

Sentropy(Y
i
k ) ≡ argmin

k=1,...,K,
i=1,...,N

|pik − 0.5|.
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Corollary 1. In the case of a single instance X the proba-
bility scoring function of Equation 2 and the entropy scoring
function of Equation 1 are equivalent.

Proof. Due to the mutual exclusion constraint,∑K
k=1 pk ≤ 1, which implies that the condition of

Proposition 1 is always satisfied.

It is easy to observe that when we have several instances
X1, . . . , XN and we compare the scores of each label-
instance pair, then the two scoring functions are no longer
necessarily equivalent. Also note that as the number of la-
bels grows, the marginals are more likely to have smaller
magnitudes and thus the condition of Proposition 1 is more
likely to be satisfied.

A Different Approach. We now introduce a new concept
that, when combined with the earlier motivation, gives rise
to a new scoring function. The key intuition lies in the sce-
nario where the discovery of a label being positive implies
that all other labels are negative. This discovery may not
be as valuable if the negative labels were already inferred
to have low marginal probability. Instead, we propose to
consider the degree of surprise of discovering that those
labels are negative. For a label with marginal probability
of being positive pk, the amount of surprise can be defined
in several ways. A function S : [0, 1] 7→ R is called a sur-
prise function if it is decreasing and S (1) = 0. A couple
examples of such surprise functions are shown here:

• LOGARITHMIC: Slog(pk) , − log pk. This is equivalent
to the self-information of the event Yk = 1 and was first
referred to as a surprise measure by Tribus (1961).

• LINEAR: Slin(pk) , 1−pk. This is associated to the 0-1
loss of Roy and McCallum (2001).

Using this definition of a surprise function, we define a new
scoring function for the mutual exclusion case as follows:

SME(Yk) , pk

K∑
c=1

1c=kS (pc) + 1c6=kS (1− pc)︸ ︷︷ ︸
Total surprise of setting Yk=1

,

+ (1− pk)S (1− pk)︸ ︷︷ ︸
Total surprise of setting Yk=0

,

(4)

where S (·) is an arbitrary surprise function, and 1· is the
indicator function which is equal to 1 if the condition in
the subscript is satisfied and is equal to 0 otherwise. Note
that the first term is the product of the probability of Yk

being equal to 1 and the sum of surprise “experienced” by
fixing the value of Yk to 1 (i.e., after propagating the mutual
exclusion constraint, we sum over the surprises of all other
labels being set to 0 and Yk being set to 1). The second term
is similarly defined as the product of the probability of Yk

being equal to 0 and the surprise of fixing Yk to that value.

No other variables are considered in this surprise value, as
no other label value is fixed because of the mutual exclusion
constraint. Note that this is substantially different than the
entropy scoring function in that it’s measuring “surprise”
rather than uncertainty.

3.2. More General Logical Constraints

The scoring function of Equation 4 and the underlying
intuition can easily be extended to more general logical
constraints than mutual exclusion. An example of a more
general logical constraint is subsumption. In this case,
each label can have a set of parent and child labels, and
a label being set to 1 implies that its parent label is 1.
To extend the method introduced in the previous section,
we need a function for propagating a fixed label-value
pair through the constraints. Let this function be defined
as F(Yk = v) , {(Yci , vi) : if Yk = v, then Yci = vi},
where ci ∈ {1, . . . ,K} is a label index, and vi ∈ {0, 1} is
the value of Yci fixed by propagating the fixed label-value
pair (Yk, v) through the constraints. We can now define our
scoring function for general logical constraints as follows:

Sconstraints(Yk) , pk
∑

(Yci
,vi)∈F(Yk=1)

S(Yci , vi)︸ ︷︷ ︸
Total surprise of setting Yk=1

,

+ (1− pk)
∑

(Yci
,vi)∈F(Yk=0)

S(Yci , vi)︸ ︷︷ ︸
Total surprise of setting Yk=0

,
(5)

where S(Yci , vi) = 1vi=1S (pci) + 1vi=0S (1− pci).

Formal Justification. We have not derived a result for
the general scoring function similar to that of Theorem 1.
However, we can use the information-theoretic information
gain to generate an interesting result, akin to our justification
for using the scoring function of Equation 2 in the setting
of mutual exclusion. We note that the information gain
for the case with general logical constraints can be defined
as a sum. The first term of this sum is the entropy of the
label whose information gain is being computed. When
the logarithmic surprise function is used with the scoring
function of Equation 5, then our scoring function contains
this entropy term, as well as an approximation of some other
terms (but not all) of the complete information gain sum.
More specifically, we have that (in this derivation we ignore
terms that are constant across all label variables, since these
terms do not affect the ranking of the labels induced by the
information gain):

I(Yk) = H(Y−k)−H(Y−k | Hk),

= H(Y−k) +H(Yk)−H(Y ) = H(Yk)−H(Yk | Y−k),

=
∑
yk

[
− P(yk) logP(yk),



Active Learning amidst Logical Knowledge

+
∑
y−k

P(y−k)P(yk | y−k) logP(yk | y−k)

]
,

=
∑
yk

[
− P(yk) logP(yk),

+
∑
y−k

[
P(yk,y−k) logP(yk,y−k)︸ ︷︷ ︸

Constant

,

− P(yk,y−k) logP(y−k)
]]
,

=
∑
yk

P(yk)
[
− logP(yk),

−
∑
y−f

where yf=F(yk)

P(y−f ,yf\k | yk)︸ ︷︷ ︸
P(y−f |yf )

logP(y−f ,yf\k)

]
,

=
∑
yk

P(yk)
[
− logP(yk),

−
∑
y−f

where yf=F(yk)

[
P(y−f | yf )︸ ︷︷ ︸

Sums to 1

logP(yf ),

+ P(y−f | yf ) logP(y−f | yf\k)
]]
,

=
∑
yk

P(yk)
[
− logP(yk)︸ ︷︷ ︸

Entropy

− logP(yf )︸ ︷︷ ︸
Constraints

,

−
∑
y−f

where yf=F(yk)

P(y−f | yf ) logP(y−f | yf\k)︸ ︷︷ ︸
Remainder

]
,

where f \ k is the set of label indices in f excluding k.
Note that the entropy scoring function of Equation 1 only
considers the term denoted by “Entropy” in this sum. When
the logarithmic surprise function is used, the general scoring
function of Equation 5 contains an approximation to the
terms denoted by “Constraints” where the joint is written
as the product of the marginals. This result shows that the
general scoring function is, in some sense, a better heuristic
for the information gain than the entropy scoring function.

3.3. Computational Complexity

We will now consider the real-world use of an active learning
system, where a request is made for a label of a particular in-
stance. Note that if we were to use the information-theoretic
information gain as our scoring function, then the cost would
be linear in N and exponential in K. Our scoring functions
reduce this cost. The entropy scoring function of Equation 1
has a computational cost linear in the number of labels and
the number of instances (i.e., because we need to compute it
for all labels); its cost is O(NK). The probability scoring
function of Equation 2 has the same cost. The mutual exclu-
sion scoring function has cost O(NK2). Finally, ignoring
the cost of the constraint propagation function, the general
scoring function of Equation 5 has a computational cost of
O(NK2), since the highest number of labels that can be
fixed is K. Note that the constraint propagation function can
have a cost exponential in K in the worst case. However,

there are special cases where the cost of that operator is not
as high. For example, with either the mutual exclusion or
the subsumption constraint the cost is linear in K. When
mutual exclusion is combined with subsumption, we can
alternate between all our constraints, one by one, and keep
propagating them, until no fixed label can be propagated
further. If the number of constraints is C, the cost of that
propagation operation is O(CK). This is the most complex
scenario that we consider in our experiments and covers
most of the practical use cases in multi-task applications.

4. Experiments
In the following paragraphs, we describe the setup of our ex-
periments, including the datasets and the evaluation metrics
that we use, and the results and their corresponding analyses.
All the datasets and code for the experiments are available
at https://github.com/eaplatanios/makina.

We first define the names that we use to refer to different
methods when plotting the results:

• RANDOM uses a random scoring function (i.e., using a
random between 0 and 1 for the score).

• ENTROPY uses the entropy scoring function of Equation
1.
• RANDOM-CP is the same as RANDOM, but also propa-

gates labels through the constraints.
• ENTROPY-CP is the same as ENTROPY, but also propa-

gates labels through the constraints.
• PROBABILITY-CP: Using the probability scoring func-

tion of Equation 2 and also propagating labels through
the constraints.

• LOG-CP: Using the constraints scoring function of Equa-
tion 5 with the logarithm surprise function and also prop-
agating labels through the constraints.

• LINEAR-CP: Same as LOG-CP, but using the linear
surprise function instead of the logarithm.

We apply the same experimental setup to all of the datasets.
Each dataset consists of a set of positive examples for each
label. For each experiment, we split the dataset into train-
ing and testing subsets. For each label, we train a binary
logistic regression classifier using the AdaGrad stochastic
optimization algorithm of (Duchi et al., 2011), with a batch
size of 100 samples per iteration. Our experimental pipeline
consists of the following steps:

1. We initially train a classifier for each label independently
using the training portion of the dataset. We consider all
positive examples for the corresponding label, along with
a set of negative examples of the same size, sampled from
the remaining set of examples in the training dataset.

2. We repeat the following steps until all of the testing data
have been manually labeled:
(a) Request a set of M examples from the testing

dataset to be manually labeled2, sequentially. For

2Note that by “example” we mean a label-instance pair and

https://github.com/eaplatanios/makina
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Table 1: Datasets used in experiments.
DATASET #CLASSES #FEATURES BALANCED? #TRAINING #TESTING #REQUESTED/ITERATION
SATIMAGE 6 36 × 3,104 1,331 100
SHUTTLE 7 9 × 30,450 13,050 1,000
SEGMENT 7 19

√
400 1,910 100

PENDIGITS 10 16
√

7,494 3,498 100
LETTER 26 16

√
15,000 5,000 1,000

NELL-7 7 180,878 × 214 14,693 500
NELL-11 11 180,878 × 242 14,693 1,000
NELL-13 13 180,878 × 2,656 18,016 2,000

Animal

Vertebrate Invertebrate

River LakeCity CountryBird Fish Mammal Arthropod Mollusk

Location

Artificial Natural

Figure 2: Illustration of the NELL-13 dataset constraints. Each box represents a label, each blue arrow represents a
subsumption constraint, and each set of labels connected by a red dashed line represents a mutually exclusive set of labels.

all the methods that include CP in their name, after
each example is obtained, propagate all the logi-
cal constraints. The examples fixed by this process
are considered manually labeled. Note that M can
vary across each dataset since they differ in size.
Please refer to Table 1 for the values of M used for
each dataset. Also note that this step differs across
our methods. Each method’s scoring function de-
termines which examples are selected for labeling.
The label-instance pair with the highest score is
selected for labeling.

(b) Move all the labeled examples from the testing to
the training dataset.

(c) Re-train the classifiers for all the labels, using the
updated training dataset. Training for the classi-
fiers is initialized at the previously learned point to
reduce convergence time.

(d) Evaluate progress using a set of metrics and the full
dataset (i.e., the training and testing parts of the
dataset, combined). Note that even though it may
seem unorthodox to evaluate on the full dataset, it is
actually meaningful for settings like NELL. In fact,
that is how NELL is evaluated, as we care about the
accuracy of its whole knowledge-base, irrespective
of how the label of an instance was obtained.

A Note on Marginal Probabilities. Note that all our
methods and results of section 3 rely on marginal proba-
bilities. In our experiments, we use classifiers to estimate
those marginals and sometimes they may not be very accu-
rate. This is actually the reason we subsample a number of
negative examples equal to the number of positive exam-
ples. Otherwise, our logistic regression classifiers would

so all possible label instance pairs from the testing dataset are
considered at this stage.

be biased towards low estimates of the probabilities, which
would cause the entropy and our proposed scoring functions
to perform very similarly, as shown in section 3.1. This
was indeed the case when we ran experiments without sub-
sampling the negative examples. This problem can also
be alleviated by using more appropriate classifiers for the
problem, than logistic regression.

4.1. Datasets

We now provide the list of data sets we used for
our experiments, with a small description for each
data set. Table 1 provides details on the statistics
and experimental setup for each dataset. All data
sets, except for the NELL data, were obtained from
https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/multiclass.html.
The NELL data sets were obtained from https:
//rtw.ml.cmu.edu/rtw/resources. Details on
the statistics and experimental setup for each data set are
provided in table 1. Note that for all data sets except
NELL-11 and NELL-13, the only constraint used is
a mutual exclusion constraint between all labels. The
constraints used for those two NELL data sets are detailed
in the following list.

• SATIMAGE: Classify a satellite image region (Feng
et al., 1993).

• SHUTTLE: Classify a space shuttle as belonging to one
of seven classes (Feng et al., 1993).

• SEGMENT: Classify a small outdoor image region
(Feng et al., 1993).
• PENDIGITS: Classify a handwritten digit (Alimoglu

and Alpaydin, 1996).
• LETTER: Classify an image as a letter of the English

alphabet (Frey and Slate, 1991).

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://rtw.ml.cmu.edu/rtw/resources
https://rtw.ml.cmu.edu/rtw/resources
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Figure 3: Results. The red colored plots refer to the proposed methods and the blue colored plots refer to existing methods
(apart from the constraint propagation step that we optionally added to all existing methods to enable a fairer comparison,
and which is denoted with a -CP appended to the method name). For the first plot, the lower the bar, the better the result. For
the rest of the plots, the higher the value of the curve per iteration, the better the result. We thus observe that the proposed
methods outperform all existing methods for all of the experiments performed.

• NELL-7: Classify noun phrases as belonging to a cer-
tain category or not. The categories considered for this
data set are Bird, Fish, Mammal, City, Country,
Lake, and River (i.e., the category represents the la-
bel in this case). The only constraint considered in this

case is that all these categories are mutually exclusive.
We use the same set of features as that used by the
coupled pattern learner (CPL) in NELL (Mitchell et al.,
2015).
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• NELL-11: Perform the same task as NELL-7,
but additionally consider the categories Animal,
Location, Artificial Location, and
Natural Location. Also include the subsump-
tion constraints shown in figure 2, while ignoring the
categories not included in this data set.

• NELL-13: Perform the same task as NELL-7, but with
the categories and constraints illustrated in figure 2.

4.2. Evaluation Metrics

We first define average area under the curve (average AUC).
At each iteration and for each label, we compute the AUC
over the whole dataset (i.e., training dataset and testing
dataset combined). Then, we compute a weighted average
of the AUCs for each label, where each label’s contribution
is weighted by the number of positive examples that exist
in the dataset, for that label. That weighted average is what
we refer to as average AUC. It is easy to see that average
AUC is a non-decreasing function with respect to iteration
number3. We use the following three metrics to evaluate the
proposed methods:

• Iterations until Average AUC=1: Number of iterations
until average AUC ≥ 0.999.

• Average AUC: Average AUC vs iteration number.
• Number of Fixed Labels: Number of labels that are effec-

tively fixed (i.e., added to the training dataset), after each
iteration. Note that this measure is not always equal to
the number of labels requested because of the constraint
propagation step.

4.3. Results Analysis

All results are shown in Figure 3. We first note that the
proposed methods consistently beat the other methods by a
significant margin, for all datasets and all evaluation met-
rics. For the datasets that only consider a single mutual
exclusion constraint, PROBABILITY-CP always performs
best with respect to the number of iterations until average
AUC=1. This is not unexpected; as we showed in Section
3, this method can be considered optimal. Furthermore,
we find it interesting that, for the average AUC plots, in
all cases where we only have a single mutual exclusion
constraint, despite seeing underperformance in early iter-
ations, PROBABILITY-CP still reaches AUC = 1 faster.
This may be based on the fact that this method first selects
label-instance pairs with probability very close to 1, which
turn out to be positive. However, after a few iterations,
the method experiences a boost and beats all of the other
methods. As for the number of fixed labels per iteration,
PROBABILITY-CP also beats the other methods by far.
This provides validation of the intuition discussed in Section
3, that the method would fix more labels when the mutual
exclusion constraint is propagated. As for the two datasets
where we also have subsumption constraints and multiple

3That nice property is the reason we use the combined dataset
as opposed to just using the testing dataset.

mutual exclusion constraints, we see that the proposed meth-
ods consistently outperform all other methods, as expected.
We did not expect, however, for PROBABILITY-CP to be
doing as well as LOG-CP and LINEAR-CP. We do not yet
have an understanding about this finding, but we find this
interesting and encouraging for the proposed methods. We
note that there are a few datasets with only a single mutual
exclusion constraint, where PROBABILITY-CP is actually
beaten early on in the average AUC curve, by our other
two proposed methods. Thus, there is value in using these
two methods in some scenarios. Finally, we found inter-
esting that the constraint propagation step alone provides a
significant performance boost to all methods.

5. Conclusion
We have proposed methods for performing active learning
efficiently in the presence of logical constraints between
the outputs of multiple classifiers. The approach resonates
with underlying intuitions and challenges the core idea be-
hind uncertainty guided sampling. We provided theoretical
justification for using the proposed methods. In a set of
experiments, we found that the methods consistently out-
performed competing methods across ten diverse datasets
and thus appear to be promising for practical applications.
Moreover, the experiments showed that our methods can
be used to speed up the learning process in NELL. Per our
knowledge, this paper is the first to describe and carefully
study methods for performing active learning when there
are logical constraints among outputs of multiple classifiers.

We are excited about numerous future directions for this
work. Our first priority is to pursue additional theoretical re-
sults for the general setting with arbitrary logical constraints.
We would also like to explore methods for a setting where
all labels for a particular data instance are requested at each
iteration; this use case is useful to systems like NELL where
the label space is extremely sparse. We would also like
to explore ways in which we can use accuracy estimates
for the trained classifiers (using methods such as those pro-
posed in (Platanios et al., 2016) and (Platanios et al., 2017),
which uses similar logical constraints, for example) in or-
der to make the active learning procedures more robust.
Implementing efficient computation of the value of infor-
mation for multiple, interdependent classifiers would be a
step towards autonomous learning systems with the ability
to reflect more deeply about their pursuit of information.
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