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Abstract
Allen Newell argued that the human mind functions as a single system and proposed the notion of a unified theory of cognition
(UTC). Most existing work on UTCs has focused on symbolic approaches, such as the Soar architecture (Laird, 2012) and the
ACT-R (Anderson et al., 2004) system. However, such approaches limit a system’s ability to perceive information of arbitrary
modalities, require a significant amount of human input, and are restrictive in terms of the learning mechanisms they support
(supervised learning, semi-supervised learning, reinforcement learning, etc.). For this reason, researchers in machine learning
have recently shifted their focus towards subsymbolic processing with methods such as deep learning. Deep learning systems
have become a standard for solving prediction problems in multiple application areas including computer vision, natural
language processing, and robotics. However, many real-world problems require integrating multiple, distinct modalities of
information (e.g., image, audio, language, etc.) in ways that machine learning models cannot currently handle well. Moreover,
most deep learning approaches are not able to utilize information learned from solving one problem to directly help in solving
another. They are also not capable of never-ending learning, failing on problems that are dynamic, ever-changing, and not
fixed a priori, which is true of problems in the real world due to the dynamicity of nature. In this thesis, we aim to bridge the
gap between UTCs, deep learning, and never-ending learning. To that end, we propose a neural cognitive architecture (NCA)
that is inspired by human cognition and that can learn to continuously solve multiple problems that can grow in number over
time, across multiple distinct perception and action modalities, and from multiple noisy sources of supervision combined with
self-supervision. Furthermore, its experience from learning to solve past problems can be leveraged to learn to solve future
ones. The problems the proposed NCA is learning to solve are ever-evolving and can also be automatically generated by the
system itself. In our NCA, reasoning is performed recursively in a subsymbolic latent space that is shared across all problems
and modalities. The goal of this architecture is to take us a step closer towards general learning and intelligence. We have
also designed, implemented, and plan to extend an artificial simulated world that allows us to test for all the aforementioned
properties of the proposed architecture, in a controllable manner. We propose to perform multiple case studies—within this
simulated world and with real-world applications—that will allow us to evaluate our architecture.

1 Introduction
Cognitive architectures were first introduced by Newell
(1990) who argued that the human mind functions as a sin-
gle system, and proposed the notion of a unified theory of
cognition (UTC). They often consist of constructs that reflect
assumptions about human cognition and that are based on
facts derived from psychology experiments (e.g., problem
solving, decision making, routine action, memory, learning,
skill, perception, motor behavior, language, motivation, emo-
tion, imagination, and dreaming). In fact, Newell believed
that cognitive architectures are the way to answer one of
the ultimate scientific questions: “How can the human mind
occur in the physical universe?”. Most existing work on
UTCs has focused on symbolic approaches, such as the Soar
architecture (Laird, 2012) and the ACT-R (Anderson et al.,
2004) system. However, such approaches limit a system’s
ability to perceive information of arbitrary modalities, require
a significant amount of human input, and are restrictive in
terms of the learning mechanisms they support (supervised
learning, semi-supervised learning, reinforcement learning,
etc.). For this reason, researchers in machine learning (ML)
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have shifted their focus towards methods like deep learning.

Deep learning systems have become the de facto standard
for solving prediction problems in a multitude of application
areas including computer vision, natural language process-
ing, and robotics. Driven by progress in deep learning, the
machine learning community is now able to tackle increas-
ingly more complex problems—ranging from multi-modal
reasoning (Hu et al., 2017) to dexterous robotic manipula-
tion (OpenAI et al., 2018)—many of which typically involve
solving combinations of tasks. However, many real-world
problems require integrating multiple, distinct modalities of
information (e.g., image, audio, language) in ways that ma-
chine learning models cannot currently handle well. Further-
more, most of these approaches are also not able to utilize
information learned from solving one problem to directly
help in solving another—something at which human intel-
ligence excels. There have been some limited attempts to
train a single model to solve multiple problems jointly (e.g.,
Kaiser et al., 2017), but the resulting systems generally under-
perform those trained separately for each problem. Moreover,
most of the existing approaches are also not capable of never-
ending learning (NEL); namely a machine learning paradigm
in which an algorithm learns from examples continuously
over time, in a largely self-supervised fashion, where its ex-
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perience from past examples can be leveraged to learn future
examples (Mitchell et al., 2018). Current ML systems fail
when the problems that need to be learned are not fixed a
priori, but are rather dynamic and keep changing as part
of the environment where the learning agents operate. For
example, humans do not just learn to solve a fixed set of
problems, but they rather adapt and by solving one problem,
they become better able to tackle new problems that they
may even have been previously unaware of1. Furthermore,
humans are capable of creating problems to learn, on their
own, something that current ML systems are not designed
to achieve. Never-ending learning is thus also something at
which human intelligence excels. To achieve true intelligence,
a learning agent that interacts with the real world needs to be
able to adapt in such a continuous fashion (i.e., due to the real
world’s dynamic nature). In fact, such an ability is crucial for
never-ending learning, because learning forever only really
makes sense if the learning objectives are ever-evolving.

We aim to bridge the gap between UTCs, deep learning, and
never-ending learning. To that end, we propose a neural cog-
nitive architecture that allows for a tighter coupling between
problems, as well as a higher-level of abstraction over distinct
modalities of information. We thus aim to test the following
hypothesis in this thesis:

A computer system with an architecture inspired by human
cognition can learn to continuously solve multiple problems
that can grow in number over time, across multiple distinct
perception and action modalities, and from multiple noisy
sources of supervision combined with self-supervision. Fur-
thermore, its experience from learning to solve past problems
can be leveraged to learn to solve future ones.

Our main goals can be summarized as follows:

Formalizing never-ending learning and the notion of a neu-
ral cognitive architecture. This includes defining the notion
of an ever-evolving set of learning problems, whether the
problems are provided externally or generated by the learn-
ing system itself, as well as ways to handle this setting.
Designing a neural cognitive architecture that is inspired
from the Hub-and-Spoke model of human cognition
(Rogers et al., 2004; Ralph et al., 2017) and that also ac-
counts for human goal-priming (Custers and Aarts, 2005;
Aarts et al., 2008; Takarada and Nozaki, 2018). It is a novel
modular architecture that contains perception and action
spokes (i.e., modules), and a common reasoning hub for
all problems, that is independent of data modalities. The
reasoning hub enables human-inspired capabilities such
as associative memory (Fanselow and Poulos, 2005; Ran-
ganath and Ritchey, 2012) and world simulation. It makes
use of contextual parameter generation (Platanios et al.,
2018) to emulate goal-priming.
Evaluating the capabilities of the proposed architecture

1For example, after humans managed to build heart monitoring
devices, new unsolved problems became available, such as discover-
ing the relationship between heart rate or blood pressure and specific
health problems.

using multiple case studies over different learning settings.
One such setting is the artificial Jelly Bean World that we
have created, and where we can control the kinds of prob-
lems the agent needs to solve, and their interactions. We
have designed this world in a way that renders never-ending
learning necessary, and plan to extend it so that it allows
us to test all parts of our hypothesis, in a controllable man-
ner. After testing our hypothesis in this artificial world, we
also plan to perform experiments on real world problems,
related to natural language processing, computer vision,
and potentially healthcare. Healthcare applications are in-
teresting because they present a real-world setting where
such an architecture would be useful. This is due to the low
amount of training data and large number of interconnected
problems that underlie many healthcare applications.

This proposal is meant to describe our way of thinking about
the design space for this problem as a whole. We are propos-
ing to make progress towards confirming and exploring the
aforementioned thesis statement, rather than being exhaus-
tive. In the following section we discuss our main motivation
for this thesis. Then, in Section 3 we describe the proposed
approach along with background and related work for each
of its components, and in Section 4 we describe our planned
evaluation case studies. Finally, in Section 5 we present a
tentative timeline for the proposed work.

2 Motivation
A long-standing goal in the fields of artificial intelligence and
machine learning is to develop algorithms that can be applied
across domains and that can efficiently handle multiple prob-
lems, just like the human mind does. Even though research
in multi-task learning has a long history (Caruana, 1997),
there has been a resurgence of interest in fundamental ques-
tions related to: (i) algorithmic frameworks for multi-task
learning, such as learning-to-learn or meta-learning (Thrun
and Pratt, 1998; Finn et al., 2017; Franceschi et al., 2018)
and never-ending/lifelong learning (Mitchell et al., 2018), (ii)
establishing best practices for building reliable systems that
can handle multiple tasks at scale, such as federated learning
for model personalization (Smith et al., 2017) or multi-agent
coordination (Cao et al., 2013; Samarakoon et al., 2018), and
(iii) learning deep representations (Bengio et al., 2013) that
support multi-tasking and enable transfer learning in multiple
domains, such as computer vision (Yosinski et al., 2014) or
natural language processing (Collobert and Weston, 2008;
Peters et al., 2018; Devlin et al., 2018).

Our interest in these questions started while working on the
Never-Ending Language Learner (NELL) (Mitchell et al.,
2018). NELL is a system that learns to read the web and
extract knowledge from websites, in a never-ending fash-
ion. One of the core mechanisms employed in NELL is
co-training, which was originally proposed by Blum and
Mitchell (1998). Co-training is a semi-supervised learning
algorithm where multiple models are being trained together
and each model can use as training examples the most con-
fident predictions made by the other models. If any of the
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models produces wrong but confident predictions, these can
propagate to the other models and eventually hinder learning.
This motivated us to develop several algorithms for estimat-
ing accuracies of classifiers from unlabeled data (Platanios
et al., 2014; 2016; 2017). The key idea behind all these meth-
ods is that agreement among multiple models implies that
the agreed upon prediction is more likely correct than wrong.
However, we also observed that once we have multiple inter-
acting tasks that are being learned jointly, we can perform
accuracy estimation in a more robust manner by also account-
ing for inconsistencies between the tasks. For example, if
one classifier predicts that Pittsburgh is a city and another
one predicts that it is a person, and we know that something
cannot be both a city and a person at the same time, then
we can infer that at least one of these two classifiers must be
wrong. Finally, this work pointed out an important pattern in
how current machine learning systems are trained. Training
data is often obtained by collecting multiple noisy labels for
samples through crowdsourcing that are then aggregated to
produce a single “denoised” label per sample. To this end,
we adapted our accuracy estimation methods resulting in a
learning framework for general machine learning systems
that allows them to be trained from multiple noisy labels
directly—without requiring an explicit label aggregation step
(Platanios et al., 2019). Through this and other experiences
from working in NELL, we observed that: (i) learning multi-
ple tasks jointly while also accounting for their interactions,
and (ii) learning from multiple noisy sources of supervision,
are both crucial to building successful NEL systems.

3 Approach
We structure the proposed work in four main parts:

1. Learning from Multiple Noisy Labels: Mechanisms for
learning from multiple noisy sources (e.g., obtained using
a crowdsourcing platform), including self-supervision.

2. Contextual Parameter Generation: Methods that en-
hance the model capacity of neural networks allowing
them to learn functions that are conditioned on some of
their inputs (i.e., the context), thus enabling more effective
multi-task learning architectures.

3. Self-Reflection: Mechanisms that allow a system to self-
evaluate and improve without external supervision. This is
an important property for never-ending learning systems
as the extent of external supervision is often limited, but
the system needs to keep learning.

4. Unified Architecture: A unified neural cognitive archi-
tecture that puts together all aforementioned components,
along with several new ones, and is able to perform large
scale multi-modal and multi-task learning.

3.1 Learning from Multiple Noisy Labels

Machine learning systems often rely on large amounts of
annotated examples to be trained. This is especially true for
never-ending learning systems. Perhaps the most common
way to collect such training examples is using noisy crowd-
sourcing platforms like Amazon Mechanical Turk (AMT).
Practitioners typically adopt the following process: (i) col-

lect multiple annotations per example in order to reduce the
amount of noise, (ii) aggregate these annotations into a single
label per example that represents an estimate of the ground
truth (e.g., using majority voting), and (iii) train machine
learning systems using the resulting labeled examples. This
results in both redundant annotations and potentially noisy
ground truth labels. We propose a novel approach that en-
ables us to merge the steps of aggregating noisy annotations
and training machine learning systems, by allowing a system
to be trained directly from multiple noisy annotations. Our
approach also learns models of the difficulty of each exam-
ple and the competence of each annotator in a generalizable
manner (i.e., these models can make predictions for previ-
ously unseen examples and annotators). This enables us to
more optimally assign annotators to examples, thus driving
the cost of crowdsourcing down, while improving the quality
of the resulting datasets. Our approach can also be used to
perform ensemble learning and to estimate the accuracies
of classifiers from unlabeled data. The latter has become
especially relevant with recent advances in weak supervision
and self-supervision (e.g., Ratner et al., 2017).

The problems of ensemble learning, aggregating and denois-
ing crowdsourced data, and estimating accuracy from un-
labeled data, all share the same underlying core problem:
learning from multiple noisy labels. More specifically, there
is a common setting among all these problems where: (i)
there exists an underlying ground truth, (ii) we only get to
observe multiple, possibly overlapping, noisy views of that
truth, and (iii) we want to be able to estimate that truth. The
noisy views can have arbitrary form, such as: (i) human anno-
tators in a crowdsourcing platform, that may make mistakes
(e.g., Zhou et al., 2015), or (ii) classifiers that have already
been trained (e.g., Platanios et al., 2014; 2016; 2017). To give
a concrete example, consider the problem of medical pathol-
ogy diagnostics, where learning-based models are becoming
increasingly popular (e.g., Gulshan et al., 2016). Training
models by imitating expert decisions is not as straightforward
in such a scenario: the true diagnosis is unknown a priori,
while the diagnostic concordance between experts is often far
from perfect (Elmore et al., 2015). If we assume that the ex-
pert decisions are the ground truth, the model may overfit to
their mistakes. Therefore, this practical setup requires a prin-
cipled learning framework that takes into account potential
discrepancies or disagreements in the observations.

3.1.1 RELATED WORK

Learning binary classifiers from examples with noisy labels
was first introduced and theoretically characterized by An-
gluin and Laird (1988). In that work, the noise model was
based on independent random flips of the labels with some
probability η < 0.5. Kearns (1998) later characterized a class
of robust learning algorithms for such types of label noise.
Nettleton et al. (2010) studied empirically the behavior of (at
the time) popular learning algorithms under different magni-
tudes of noise. Natarajan et al. (2013) proposed to modify
surrogate loss functions to obtain unbiased estimators and
obtained performance bounds for empirical risk minimization
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in the presence of noisy labels. More recently, Frénay and
Verleysen (2014) surveyed several notable methods and vari-
ations of this problem. This whole line of work differs from
our setting in that each example only gets a single noisy label.
On the contrary, we assume that each example is labeled
multiple times using independent labeling processes, which
we refer to as predictors, each of which is characterized by
an unknown confusion matrix.

This problem has also been previously framed as estimating
accuracy from unlabeled data, or as aggregating worker pre-
dictions in the context of crowdsourcing. Similar settings
were previously explored by Collins and Singer (1999), Das-
gupta et al. (2001), Bengio and Chapados (2003), Madani
et al. (2004), Schuurmans et al. (2006), Balcan et al. (2013),
and Parisi et al. (2014), among others. However, none of the
previous approaches considers explicitly modeling the ground
truth; they rather assume some form of independence or
knowledge of the true label distribution. Collins and Huynh
(2014) review many methods that were proposed for estimat-
ing the accuracy of medical tests in the absence of a gold
standard. Previously we proposed formulating the problem as
an optimization problem that uses agreement rates between
multiple noisy labelers over unlabeled data (Platanios et al.,
2014). Dawid and Skene (1979), Moreno et al. (2015), and
us (Platanios et al., 2016) have also previously formulated the
problem in terms of probabilistic graphical models. Tian and
Zhu (2015) proposed a max-margin majority voting scheme
applied to crowdsourcing. More recently, we introduced a
method that is able to use information provided in the form of
logical constraints between the noisy labels (Platanios et al.,
2017), and Khetan et al. (2017) proposed using a paramet-
ric function to model the ground truth. However, previous
approaches were outperformed by Zhou et al. (2015) who
formulated the problem as a form of regularized minimax
conditional entropy and used their method in crowdsourcing.

Our approach is a generalization of the approaches proposed
by Zhou et al. (2015), Platanios et al. (2016), and Khetan
et al. (2017). Similar to our prior work (Platanios et al.,
2016) we define a generative process for our observations.
However, our approach is also able to handle categorical
labels, as opposed to just binary labels. Also, similar to
Zhou et al. (2015) we define the confusion matrix for each
instance-predictor pair as a function of instance difficulty
and predictor competence. However, in our approach we
explicitly learn the difficulty and competence functions, al-
lowing us to generalize to previously unseen instances and
predictors. Interestingly, the inference algorithm for our gen-
erative probabilistic model has a similar form to that of Zhou
et al. (2015) (except for the explicit learning of a ground truth
function, as well as of difficulty and competence functions).
In fact, the algorithm of Zhou et al. (2015) can be derived
as an Expectation-Maximization (EM) inference algorithm
for a generative model, that is a simplified version of the
one that we are proposing. Finally, similar to Khetan et al.
(2017) we propose to use a parametric function to model the
ground truth, but we go a step further and also propose to
use parametric functions to model the instance difficulties

and predictor competences. Thus, our approach allows us
to predict which predictors are likely to perform better for
specific instances, enabling us to allocate predictors more
optimally and reduce costs.

3.1.2 PROPOSED METHOD

Let us denote the observed data by D = {xi, Ŷi}Ni=1, where
Ŷi = {Mi, {ŷij}j∈Mi}, Mi is the set of predictors that
made predictions for instance xi, and ŷij is the output of
predictor f̂j for instance xi. Our goal is to learn functions
representing the underlying ground truth and predictor quali-
ties, given our observations D.

Ground Truth. We define the ground truth as a function
hθ(xi) that is parameterized by θ and that approximates
the true distribution of the label given xi. In our setting,
hθ(xi) ∈ RC≥0 and

∑
j [hθ(xi)]j = 1, where C is number of

values the label can take (i.e., assuming categorical labels).
More specifically, [hθ(xi)]k , P(yi = k | xi), where we use
square brackets and subscripts to denote indexing of vectors,
matrices, and tensors. For example, hθ could be a deep neural
network that would normally be trained in isolation using
the cross-entropy loss function. In our method the network
is trained using the Expectation-Maximization algorithm, as
described in the next section.

Predictor Qualities. We define the predictor qualities as the
confusion matrices Qij ∈ RC×C≥0 , for each instance xi and
predictor f̂j , where

∑
l[Qij ]kl = 1, for all k ∈ {1, . . . , C}.

[Qij ]kl represents the probability that predictor f̂j outputs
label l given that the true label of instance xi is k. We
define these confusion matrix in a way that generalizes the
successful approach of Zhou et al. (2015)2:

Qij = Di •3 Cj , (1)

where •i represents an inner product along the ith dimension
of the two tensors, and:

– Di = dφ(xi) represents the difficulty tensor for instance
xi, where d is a function parameterized by φ, Di ∈
RC×C×L, and L is a latent dimension (it is a hyperparame-
ter of our model). [Di]kl− is an L-dimensional embedding
representing the likelihood of confusing xi as having label
l instead of k, when k is its true label.

– Cj = cψ(rj) represents the competence tensor for predic-
tor f̂j , where c is a function parameterized by ψ, rj is some
representation of f̂j (e.g., could be a one-hot encoding of
the predictor, in the simplest case), and Cj ∈ RC×C×L.
[Cj ]kl− is an L-dimensional embedding representing the
likelihood that predictor f̂j confuses label k for l, when k
is the true label.

Using L > 1 allows the instance difficulties and predictor
competences to encode more information. An intuitive way
to think about this is that we are embedding difficulties and

2We also perform a normalization step such that all elements of
Qij are non-negative and such that each row sums to 1 (thus making
each row a valid probability distribution).
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competencies in a common latent space, which can be thought
of as jointly clustering them. This is in fact very similar to
how matrix factorization methods are used for collaborative
filtering in recommender systems.

Our goal is to learn functions hθ, dφ, and cψ, given observa-
tions D. To do that, we propose a generative process for our
observations. For i = 1, . . . , N , we first sample the true label
for xi, yi ∼ Categorical(hθ(xi)). Then, for j ∈ Mi, we
sample the predictor output ŷij ∼ Categorical([Qij ]yi−),
where [Qij ]yi− represents the yith row of Qij . We derive
an EM algorithm for performing inference that is presented
in (Platanios et al., 2019). The resulting approach can be
thought of as introducing a new loss function for training the
model hθ using multiple noisy labels per training instance,
each coming from a distinct noisy predictor. This new loss
function introduces latent variables representing the ground
truth labels, as well as a couple of auxiliary models that are
learned, and which represent the instance difficulties and
predictor competences. Perhaps most interestingly, a key dif-
ference between this approach and previous work is that we
are able to explicitly learn functions that output the likelihood
that a predictor will label a specific instance correctly. This
enables using this method to perform crowdsourcing actively
by assigning annotators to instances they are likely to label
correctly, thus reducing redundancy and driving costs down.

3.2 Contextual Parameter Generation

In order to present the second major component of the pro-
posed work we need to first provide some background. We
refer to parameterized functions as networks. We denote a
network by a lowercase English letter with a lowercase Greek
letter subscript (e.g., fθ), where the Greek letter refers to
the network parameters. Therefore, given some input, x, the
output of the network is simply defined as:

y = fθ(x). (2)

Most deep learning models can be seen as networks. For
example, we can have a convolutional neural network (CNN)
that takes images as input, transforms them using convolu-
tional filters (i.e., parameters), and produces distributions
over labels (e.g., cat or dog). Research in deep learning has
resulted in multiple network architectures that can success-
fully learn to solve various problems, and that each makes
different assumptions about its input space. For example,
CNNs assume that there is some periodical structure in the
input space, whereas recurrent neural networks (RNNs) as-
sume that each part of an input sequence can be processed
using the same network parameters.

Never-ending learning requires a system to be able to perform
multiple tasks; perhaps even previously unseen tasks that can
be formulated in terms of other previously learned tasks. This
means that traditional multi-task neural network architectures
that use a different output layer for each task (e.g., Caruana,
1997) cannot be used in this context. That is because the
set of tasks the system is learning to perform is not known a
priori, when the neural network architecture is chosen. This
motivates us to treat tasks as separate inputs.

We argue that, for most existing neural network architectures,
it is hard or even impossible to encode assumptions about
the contexts (e.g., tasks) in which they are used, to share
information across these contexts, and to “personalize” them
for each context. As we discuss in the end of this section, this
limitation could be attributed to the fact that most existing
architectures are only able to represent additive interactions
between their inputs. Previously, there has been some suc-
cess in encoding this kind of assumptions using probabilistic
graphical models (PGMs). When working with PGMs, re-
searchers typically first define a prior probabilistic model over
how the data observations are generated and then perform
inference to obtain a posterior distribution over the model pa-
rameters and possibly also latent variables. These generative
models are often hierarchical, meaning that the parameters
of the distribution from which the observations are sampled,
are also often sampled themselves from a higher-level dis-
tribution. This results in an interesting type of information
sharing across all the different distributions, and has been
behind many successful models, such as latent Dirichlet allo-
cation (Blei et al., 2003) and hierarchical Dirichlet processes
(Teh et al., 2005). There have been efforts to combine such
approaches with neural networks (e.g., Tran et al., 2018), but
they are often expensive and impractical for large scale prob-
lems. Furthermore, in order to make probabilistic inference
tractable they often limit model expressivity.

This motivated us to develop a method called contextual
parameter generation (CPG) (Platanios et al., 2018). The
core idea behind this method is that, given a network, fθ,
instead of learning θ directly while training, we define it as:

θ = gφ(c), (3)

where c is a description of the context in which we are apply-
ing the model (for example, if we are encoding text written in
English as part of a multilingual machine translation model,
the context could simply be a one-hot encoding of the English
language). The parameters we learn during training are just
those of gφ, which we refer to as the parameter generation
network. This allows us to share information across instances
of fθ used in different contexts. While we previously had to
learn and use different parameters for each context in which
fθ is used, they are now all generated as a function of the
context. For example, instead of using different encoders for
text written in English and text written in German, we can
now use one encoder and simply generate its parameters as
a function of a language representation. Note that we can
simply define gφ as a lookup table over different contexts,
and this would reduce to the previous setting in which there
is no information sharing. However, the CPG formulation al-
lows us to impose arbitrary information sharing structures by
manipulating the functional form of the parameter generation
network, gφ. For example, we could learn embeddings for
all language families and have all Romance language embed-
dings be defined as linear transforms of the corresponding
Romance family embedding. When performing multi-task
learning, we can think of each task as a context in which a
network processes its inputs. Given a representation of this

5



Neural Cognitive Architectures for Never-Ending Learning

context, we can generate the parameters of a single universal
network that is used for all tasks. The way contexts are de-
fined and processed to generate parameters can thus allow for
controlled information sharing across multiple tasks. We re-
fer to networks that employ CPG as contextualized networks,
and we let them optionally have some of their parameters be
generated by a CPG component, and some be directly learned
(e.g., we may not want to generate the parameters of a batch
normalization layer using CPG). Note that contextualized
networks also have better generalization properties than plain
networks because they can be used with previously unseen
contexts, as long as the new contexts can be composed out of
previously seen contexts (refer to Section 3 for more details).

Previous Uses of CPG. We first introduced CPG in a multi-
task setting, as a means to tackle the multilingual machine
translation (MT) problem (Platanios et al., 2018). Multi-
lingual MT is challenging due to the low-resource nature
of many languages (i.e., it is hard and often impossible to
collect the massive amounts of parallel sentences required
for training a neural MT system). It is therefore crucial to
share information across languages, rather than train multiple
pairwise translation models in isolation. In neural MT, when
translating a sentence from English to German, we first en-
code the source sentence to some intermediate representation,
and then we decode it into some target language. Applying
CPG to this problem, we used the source language (i.e., En-
glish) as the context of the encoder and the target language
(i.e., German) as the context of the decoder. We learned lan-
guage embeddings and used linear transforms to obtain the en-
coder/decoder parameters from these embeddings. We were
able to show significant performance gains over the same
networks without CPG; especially so for the low-resource set-
ting. Furthermore, we showed that CPG allows us to perform
zero-shot translation (meaning to translate between pairs of
languages that were not observed in the training data), thus
indicating that it can be used to generate network parameters
for new, previously unseen tasks. We also applied CPG in the
problem of question answering over graphs (Platanios* et al.,
2019), also known as link prediction. In this case, we are
given a source entity (e.g., Pittsburgh) and a relation (e.g.,
CityInCountry), and are asked to predict the target entity
(e.g., USA). Here, different questions correspond to different
problems and can be used as the context in which to generate
the parameters of a universal question-answering model. We
were able to show that CPG outperforms all existing methods
and thus establishes a new state-of-the-art for this problem.
More recently, we have also started applying CPG to develop
better image and video compression methods, and also as a
means to handle task composition.

Feeding Context as an Additional Input. Why not just
feed the context as another network input?

1. Structured Information Sharing: Similar to the motivation
for PGMs described earlier in this section, CPG provides
a structured way to share information across contexts.

2. Additive Interactions: Without loss of generality, let us
split the input x to a neural network in two parts, x0 and

x1. For example, assuming x is a vector, then x0 and
x1 are vectors such that when concatenated, they form x.
Most neural network architectures currently in use only
allow for interactions of the following form:

y = fθ(h
0
φ0

(x0) + h1φ1
(x1)), (4)

where f , h0, and h1 are arbitrary functions, and
y is the output of the neural network. This form
is very restrictive. For example, it cannot be used
to represent simple if-then-else rules such as
“if x0 = 2,then 2x else 5x1”. This is especially im-
portant for multi-task learning because we can think of
x0 as the description of some task and we might want
to condition on that task while processing the rest of the
model inputs. This would be the case for a mixture of
experts model, for example. In order to represent this kind
of interactions we have to explicitly encode them in the
neural network architecture. Ideally, we want the model
to be able to learn these interactions on its own, if they
are necessary, instead of having them be hardcoded as
part of the model architecture. CPG in fact allows for
multiplicative or even polynomial interactions between
h0φ0

(x0) and h1φ1
(x1), which would allows us to represent

if-then-else rules.
3. Deployment: CPG allows us to generate a context-specific

model and later use it without involving the parameter
generation network. This can be beneficial for deployment.
For example, if we only care about English-to-German
translation due to an upcoming vacation trip, we could
have Google Translate generate a translation model for
this language pair and then store that model on a mobile
device for offline use.

4. Modeling Assumptions: Different neural network archi-
tectures make different assumptions. For example, CNNs
assume spatial invariance for the inputs (meaning that they
contain repeating patterns in different locations). This as-
sumption is unlikely to hold for an arbitrary context vector
and so it is unreasonable to just concatenate an arbitrary
context vector with an image and feed the result to a CNN.
CPG avoids this problem because the architecture modifi-
cation it entails does not affect the assumptions made by a
network about the input data.

3.2.1 RELATED WORK

Ha et al. (2018) are probably the first to introduce a similar
idea to that of having one network (called a hypernetwork)
generate the parameters of another. However, in that work,
the input to the hypernetwork are structural features of the
original network (e.g., layer size and index). Al-Shedivat et al.
(2017) also propose a related method where a neural network
generates the parameters of a linear model. Their focus is
mostly on interpretability (i.e., knowing which features the
network considers important). Dumoulin et al. (2018) provide
a comprehensive review of some more related work from
other fields, such as computer vision, that was published
concurrently to our machine translation work. Furthermore,
CPG is generic enough so that many existing methods can
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be formulated as CPG variants. One such example is model-
agnostic meta-learning by Finn et al. (2017), where a model
is pre-trained over a large number of tasks and then fine-tuned
on new tasks drawn from the same task distribution. In this
case, the parameter generation network consists of taking a
gradient descent step, using only the new task’s data.

3.2.2 PROPOSED WORK

We propose to divide our proposed work on CPG in two parts:
(i) understand why CPG works and what the fundamental
limitation of neural networks is that CPG tackles, and (ii)
develop novel methodology that will allow models to learn
what to condition on, rather than learn to condition on a
specific pre-specified context.

3.3 Self-Reflection

In order to achieve never-ending learning, a system needs
to be able to learn in a largely unsupervised fashion. This
requires self-reflective behavior. We propose to introduce a
novel mechanism that allows a system to self-evaluate when
there is no external supervision and to self-improve by maxi-
mizing its own self-evaluation metric. Some of our prior work
discussed in Section 3.1 can be used to self-evaluate, but it is
not directly clear how to add a self-improvement mechanism.
To this end, we plan to introduce a differentiable intrinsic
reward function that can be used for both self-evaluation and
self-improvement. This is a parametric function that is up-
dated whenever a supervision signal is provided and that is
otherwise used directly to perform model updates whenever
there is no supervision signal. This is mostly relevant to
reward shaping in reinforcement learning and represents a
more long-term goal for this thesis. In Section 3.4.7 we pro-
pose how to integrate such a mechanism in a unified neural
cognitive architecture.

3.4 Unified Architecture

The final part of our work consists of putting all the previ-
ously presented pieces together in a single neural cognitive
architecture. In order to present that, we first provide some
background on cognitive architectures.

3.4.1 COGNITIVE ARCHITECTURES

Cognitive architectures can be broadly divided in symbolic,
subsymbolic, and hybrid architectures. Symbolic systems rely
on sets of rules and reason over discrete spaces (e.g., using
first-order logic). Subsymbolic systems specify no such rules
a priori and rely instead on emergent properties of several
distinct processing units (e.g., neural networks). Hybrid ap-
proaches are a combination of the symbolic and subsymbolic
approaches. Most past work on UTCs has focused on sym-
bolic systems. In the following paragraphs, we describe two
such successful systems.

Soar. Laird (2012) designed Soar, a general cognitive archi-
tecture for developing systems that exhibit intelligent behav-
ior, that has been in use since 1983. The design of Soar can
be seen as an investigation of an approximation to complete

Modality-Invariant
Hub in the ATL

Sound

Valence

Speech Func�on

Praxis
Processing Unit
Spoke

Vision

Figure 1: The original Hub-and-Spoke model (Rogers et al., 2004).

rationality, which would imply the ability to use all avail-
able knowledge for every task that the system encounters.
The primary principle at the base of Soar’s design is that
“all decisions are made through the combination of relevant
knowledge at runtime. In Soar, every decision is based on
the current interpretation of sensory data, the contents of
working memory created by prior problem solving, and any
relevant knowledge retrieved from long-term memory.” Soar
relies on multiple learning mechanisms (chunking, and re-
inforcement, episodic, and semantic learning), and on many
representations of long-term knowledge (procedural knowl-
edge productions, semantic memory, and episodic memory).

ACT-R. Anderson et al. (2004) propose an alternative cog-
nitive architecture, ACT-R, aimed at simulating and under-
standing human cognition. ACT-R consists of constructs that
reflect assumptions about human cognition and that are based
on facts derived from psychology experiments. An important
feature of ACT-R that distinguishes it from other UTCs is
that it directly allows researchers to compare the system’s
performance to that of human participants.

In this thesis, we propose a novel cognitive architecture that
also reflects assumptions about human cognition—inspired
from the high-level design of the aforementioned systems—
but that is subsymbolic and enables the use of neural net-
works and end-to-end training. It contains components that
correspond to perception, action, reasoning, memory, world
simulation, and learning.

3.4.2 THE HUB-AND-SPOKE THEORY

Rogers et al. (2004) proposed the Hub-and-Spoke theory
of human cognition, which assimilates two important ideas:
(i) multi-modal experiences provide the main “ingredients”
for constructing concepts and they are encoded in modality-
specific cortices, or spokes, that are distributed across the
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brain, and (ii) cross-modal interactions between the modality
specific spokes are mediated by a single trans-modal hub that
is located bilaterally in the anterior temporal lobes (ATLs) of
the human brain. A visualization is shown in Figure 1. This
model of the human brain serves as one of the main inspira-
tions for the high-level design of the proposed architecture.

3.4.3 PROPOSED ARCHITECTURE

We propose a novel neural cognitive architecture (NCA) for
general learning and intelligence. The proposed architecture
is inspired from the Hub-and-Spoke model for human cog-
nition (Rogers et al., 2004; Ralph et al., 2017), as well as
human goal priming (Custers and Aarts, 2005; Aarts et al.,
2008; Papies, 2016; Takarada and Nozaki, 2018). It consists
of the following parts (an overview is shown in Figure 2):

Perception and Action Spokes: Sensing input data consists
of converting them to a common reasoning space, that is in-
dependent of the data modality. Much of the complexity of
models like BERT3 (Devlin et al., 2018), lies in perception,
rather than reasoning. In fact, for BERT, reasoning often
consists of a single linear layer, while perception consists
of a Transformer (Vaswani et al., 2017). Similarly, taking
an action consists of converting a common reasoning rep-
resentation to some output data. This can include taking
actions in some environment, or generating data of some
structure (e.g., probabilistic distribution over labels).
Reasoning Hub: Reasoning is performed in a latent space
that is independent of the data modalities and the problem
being solved. We argue that this is necessary for general
learning and intelligence, as it allows for flexible sharing
of information across different modalities and problems.
Moreover, memory and simulations of the external world
are all defined over the same latent space, abstracting away
details about the perceived data that are not relevant to
reasoning. Reasoning is described in detail in Section 3.4.5.
Goal Contextualization: The problems that the system is
learning to solve are processed such that they can contex-
tualize any part of the neural cognitive architecture. This
allows for the behavior of the system to vary across dif-
ferent problems, while still sharing information between
them, similar to how it was done for machine translation,
as described in Section 3.2. It further allows the system
to generate its own target problems that it learns to solve.
This is perhaps the most novel aspect of the proposed archi-
tecture and, as shown in the following paragraphs, derives
its inspiration from human goal priming in psychology, and
is described in more detail in Section 3.4.6.

This is inspired from work in multiple areas:

Deep Learning. Deep neural networks are very effective at
learning abstract representations for arbitrary data modali-
ties, that can then be used to perform multiple diverse tasks
(e.g., Simonyan and Zisserman, 2015; He et al., 2016; Peters
et al., 2018; Devlin et al., 2018). The typical deep learning

3BERT is the current state-of-the-art model for a multitude of
natural language processing tasks.

workflow is that for each problem researchers build large
deep neural models that pool together information from dif-
ferent sources and that are trained independently of each
other. An alternative approach is to pre-train large models in
a problem-independent manner and then fine-tune them for
each problem (e.g., Peters et al., 2018; Devlin et al., 2018;
Finn et al., 2017). However, most of these approaches do
not allow for information learned from solving one problem
to directly help solve another—something at which human
intelligence excels. For example, BERT is pre-trained as a lan-
guage model and is then fine-tuned separately for problems
such as question answering and textual entailment. There-
fore, learning to answer questions well does not affect how
well BERT reasons about textual entailment. This motivates
us to find ways to couple the learning of multiple problems
in a way that results in constructive interference between
the different problems, meaning that learning to solve one
well, helps the system learn to solve others faster. It further
motivates us to treat perception (i.e., learning informative rep-
resentations of the input data) and reasoning (i.e., learning to
solve each task in the latent space of learned representations)
separately, as most deep neural networks that are trained end-
to-end to solve multiple tasks effectively do that, and most of
their complexity is often related to perception (e.g., in BERT
problem-specific reasoning is performed by a linear layer).

Kernel Methods. Before deep learning was popular, some
of the most successful machine learning methods were mak-
ing use of kernels (Hofmann et al., 2008), by formulating
learning problems in a reproducing kernel Hilbert space
(RKHS) of functions defined on the data domain, expanded
in terms of a kernel. These kernels effectively project the data
to a space where reasoning is modeled as a linear problem.
Such a projection can be thought of as a perception module,
in terms of our formulation. Given the success of kernel
methods, this further motivates separating the treatment of
perception and reasoning.

Neuroscience. Neuroscientists have also observed that infor-
mation processing in the human brain goes from low-level
(i.e., sensory input processing) to high-level (i.e., reasoning).
There is ample evidence to support this both for both audi-
tory (Kaas and Hackett, 1998; Rauschecker, 1998; Romanski
et al., 1999; Wessinger et al., 2001; Warren and Griffiths,
2003; Zatorre and Belin, 2001; Zatorre et al., 2004) and vi-
sual information (Mishkin et al., 1983; Felleman and Van,
1991). Furthermore, there has been evidence that the devel-
opment of primary visual cortical networks is more rapid
than the development of primary motor networks in humans
(Gervan et al., 2011). This motivates the idea that perception
is a low-level functionality that is not necessarily problem-
specific and that can be learned before learning to reason and
take actions. In addition to this, there is evidence that the
brain relies on a set of canonical neural computations that are
reused for different problems (Carandini and Heeger, 2012).
For example, normalization of neural responses is one such
operation that is thought to underlie multiple other operations
such as the representation of odours, the modulatory effects
of visual attention, the encoding of value, and the integration
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Figure 2: Overview of the proposed Neural Cognitive Architecture (NCA), its main building blocks, and a simple example showing an
instance of this architecture for a classification problem. In the example, the noun “Washington” alone without the provided image, is
ambiguous and would probably not result to a high probability of referring to a city and not a person, at the same time.

of multi-sensory information. This also supports the idea of
abstracting over reasoning, by making the operations used to
perform various tasks common across all tasks and finding
other ways to specialize them.

Psychology. There has been significant evidence that prim-
ing is characteristic of human behavior (Tulving et al., 1982;
Bargh and Chartrand, 2014; Weingarten et al., 2016). Prim-

ing is a technique where exposure to one stimulus influences
the brain’s response to a subsequent stimulus. For example,
the word “dog” is recognized more quickly after having seen
the word “animal”. Priming can be perceptual, semantic,
and conceptual. Perhaps most importantly for this thesis is
goal priming (Custers and Aarts, 2005; Aarts et al., 2008;
Papies, 2016; Takarada and Nozaki, 2018). Goal primes
are cues that trigger goal-directed cognition and behaviour.
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Here, a goal refers to a state or behaviour that has reward
value and therefore motivates a person to pursue it. For ex-
ample, priming the concept of drinking can increase soda
consumption(Veltkamp et al., 2008), or priming the goal of
impression formation leads to better memory organization
and recall compared to a mere memorization goal (Chartrand
and Bargh, 1996). Goal contextualization in our architec-
ture is the computational equivalent of goal priming, in that
having specific goals changes the way in which the different
architecture parts function.

Benefits of Modularity. An important outcome of the Hub-
and-Spoke architecture design is reducing the per-problem
sample complexity. This means reducing the amount train-
ing data required to learn to solve each problem. This is
because, for multiple existing machine learning models, most
of the model complexity lies in perception (e.g., BERT). This
becomes more prevalent in reinforcement learning systems
playing video games where they receive as input the raw
pixel values of video frames as they are being rendered while
playing, and they are tasked with learning to extract infor-
mation from these raw values (e.g., Bellemare et al., 2013;
Bhonker et al., 2016; Vinyals et al., 2019). Such systems
require massive amounts of training data to learn, and we
argue that this is mostly due to their perception components.
If these components were shared across multiple problems
then their effective per-task sample complexity would be
reduced significantly. In fact, Parisotto et al. (2015) show
that pre-training agents on some arcade games, oftentimes
helps them learn faster when deployed to play other, new,
arcade games. Thus, assuming we can share the perception
component across different problems, we only need problem-
specific training data for the reasoning component. Moreover,
due to the shared reasoning hub, the per-problem sample com-
plexity can be further reduced, because the same reasoning
component is used for solving all problems. An interesting
setting is one where the perception component can be trained
using supervised tasks with differentiable loss functions, and,
at the same time, be shared with reinforcement learning (RL)
tasks where the reward function is unknown and certainly
not differentiable. We believe that this would significantly
reduce the sample complexity of the RL tasks. In Section 4,
we propose a case study for testing this hypothesis.

The proposed architecture components reflect assumptions
about human cognition that are based on facts derived from
psychology experiments, thus rendering the proposed archi-
tecture, a cognitive architecture. In the following sections we
describe the different architecture components in more detail.
Finally, in Sections 3.4.7 and 3.4.8, we describe how learning
is performed. Note that, not all architectural components
that we describe in the following sections are necessary for
all problems. Therefore, for some problems, some of the
components may be ignored (e.g., a world simulator may not
be relevant for a text classification task).

3.4.4 PERCEPTION AND ACTION SPOKES

We define perception and action spokes using two kinds of
data modalities: (i) perception modalities that represent data
types that a model can receive as input, and (ii) action modal-
ities that represent data types that a model can produce as
output. Each kind of modality has a different specification:

Perception Modalities: Input space modalities are de-
fined as tuples (DataType,SensorNetwork), where
DataType is the type of data supported by this modal-
ity (e.g., String), SensorNetwork is a contextualized
network that takes inputs of type DataType and pro-
duces vectors of size Ls, and Ls is the reasoning input
representation size. Given some data of type DataType
(e.g., a string of characters with type String), and op-
tionally, a context (described in the next section), the
SensorNetwork produces a vector of size Ls, that the
reasoning module can understand.
Action Modalities: Output space modalities are defined
as tuples (DataType,EffectorNetwork), where
DataType is the type of data supported by this
modality (e.g., scalar number in the interval [0, 1]),
EffectorNetwork is a contextualized network that
takes as input vectors of size Le and produces outputs
of type DataType (e.g., a linear transformation followed
by a sigmoid activation function), and Le is the reasoning
output representation size.

Note that a modality can act as both a perception and an action
modality, as long as both a sensor and an effector network
are provided. In this case, we also allow the sensor and the
effector networks to optionally share some or all of their
parameters. Examples of various modalities are shown in
Table 1. Modalities are defined such that, for any given input
(or output) data type, there is a single matching perception
(or action) modality that will be used.

Due to their generic definition, modalities can be composed.
For example, given perception modalities P1 and P2, we can
construct a pair modality Pair[P1,P2], whose data type
is a pair of P1.DataType and P2.DataType, and whose
sensor network is a function of the two modalities’ sensor
networks. For example:

x 7→ Pool(P1.SensorNetwork(x[0]),

P2.SensorNetwork(x[1])).

Compositionality gives the proposed NCA high expressive
power with respect to the kinds of data it can handle. Compo-
sitionality, more generally (e.g., also at the problem space), is
a core aspect of the proposed architecture and it is discussed
in more detail in Section 3.4.6.

Communication and Language. An interesting direction
that we wish to explore in the long term is to add support
for a modality that corresponds to communication with other
agents (i.e., an artificial learned language). This modality
would act as both a perception and an action modality and
we could define its data type as a fixed-size vector containing
numeric values, for example. We can test for the ability of
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Modality Examples
Data Type Sensor Network Effector Network Description
String BERT Encoder RNN Decoder Text
Image CNN Deep Convolutional GAN Image
Scalar[0,1] – MLP→Sigmoid Binary Distribution
Vector[0,1] – MLP→Softmax Categorical Distribution

Table 1: Example modalities. RNN stands for Recurrent Neural Network, CNN for Convolutional Neural Network, GAN for Generative
Adversarial Network, MLP for Multi-Layer Perceptron, Scalar[0,1] for a single number in the interval [0, 1], and Vector[0,1] for a
vector containing numbers in the interval [0, 1].

agents to learn a language and communicate effectively by
conducting experiments in a multi-agent setting where solv-
ing certain problems requires coordination and collaboration.
This is related to the work of Sukhbaatar et al. (2016) and
Andreas et al. (2017).

3.4.5 REASONING HUB

The reasoning component of the proposed architecture con-
sists of a few parts. At the core lies the reasoning unit. This
unit transforms the perception component output to an input
for the action component, and is represented as a contextual-
ized network. It is generally accepted that not all problems
require the same amount of reasoning (Kahneman and Egan,
2011). For example, solving an algebra problem requires
more thinking than recalling your own name. Therefore,
we argue that the ability to reason for arbitrary amounts of
time, depending on the problem being solved, is an important
aspect of general learning and intelligence. Most existing ma-
chine learning approaches do not allow for a variable amount
of reasoning, as the amount of computation is predefined and
fixed, as part of the network architecture. The few attempts
that do allow for this have been limited to very specific prob-
lems and have only shown small gains over preexisting fixed
computation time approaches (Graves, 2016; Dehghani et al.,
2019). In order to enable this capability in the proposed neu-
ral cognitive architecture, we decided to make the reasoning
unit recursive, meaning that its output can optionally be fed
back as input again, to recurse over the reasoning transforma-
tion. Each application of the reasoning transformation can
be thought of as a reasoning step. The reasoning unit also
outputs a decision on whether or not to stop, so that it can
stop reasoning and produce an output at some point. The
recursive nature of this unit introduces several challenges
with respect to how it should be trained. Our initial plan is to
incur a pondering cost, which is proportional to the number
of reasoning steps used, and add that cost to the loss function
used to train the reasoning unit.

Recursion. More formally, at each time step t, the reasoning
unit performs the following transformation4:

[at+1, st+1,STOPt+1] = R(pt, at, st), (5)

where R represents the reasoning unit transformation, at rep-
resents the reasoning unit output at time t, st represents the
internal state of the unit at time t, pt represents the reason-

4This is not equivalent to simply using a recurrent neural network
(RNN), because the number of recursion steps is not predetermined.

ing unit input at time t which comes from the perception
component (note that if the system operates in a real-time
environment, this may be different across different reasoning
steps), and STOPt is a boolean flag representing the decision
of the reasoning unit about whether or not to stop reason-
ing at time t. Finally, aT is fed to the action component,
where T is such that STOPT = True. Enhancing the rea-
soning unit with a state significantly increases its modeling
capacity; it can now even perform a search with backtracking
support (e.g., dynamic programming). This initial approach
is inspired by the work of Graves (2016).

Memory. In designing general learning architectures, we
need allow for an explicit way for learning systems to re-
member experiences. This can happen implicitly, through
the learned model parameters (assuming high capacity net-
works), but it can also be modeled explicitly by equipping
the agent with a memory component. Cognitive architectures
often use some form of memory that is symbolic, such as a
knowledge-base (KB) that contains learned facts. We propose
to add a memory component to our architecture, where all
memories are represented in the latent reasoning space, rather
than being grounded in the perception or action modality
data types. This allows the memory to abstract away details
about the data that are not relevant to the reasoning process.
The way memory is added to our architecture is through the
reasoning unit, which is enhanced such that it can read and
write to memory, while performing its transformation. More
formally, we define the memory component as consisting of
two functions, MREAD : K 7→ V and MWRITE : (K,V ) 7→ (),
where K and V correspond to the memory key and value
types, respectively, and the “ 7→” notation is used to denote
the function input and output types5. Possible design choices
for the memory include memory networks (Sukhbaatar et al.,
2015), or even KBs defined over the latent reasoning space.

We propose to start with a simple, yet novel6, attention-based
memory mechanism. In this case, the memory is defined
as a pair of matrices, Mk ∈ RM×Dk , and Mv ∈ RM×Dv ,
where M is the memory size, Dk is the dimensionality of
the keys, and Dv is the dimensionality of the values stored in
the memory. Mk contains the memory keys and Mv contains
the corresponding memory values. Let us refer to the K-
valued input of MREAD and MWRITE as the query. Queries are

5We use “()” to represent the “void” type, meaning that the
function returns no values, and is only used for its side effects.

6Novel because we are not aware of prior work that learns a
memory indexing mechanism.
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defined as vectors of size Dk. When a component wants to
access a value stored in memory, it needs to provide a query
“describing” that value7. We also define an indexing function,
I : K 7→ ∆M , where ∆M denotes the M -simplex, which
contains all vectors of size M whose elements are in [0, 1]
and sum to 1. Intuitively, the indexing function maps from a
query to a distribution over memory locations The indexing
function that we plan to use initially is the scaled dot-product
attention by Vaswani et al. (2017):

I(q) = Softmax

(
qMT

k√
Dk

)
, (6)

which effectively measures the similarity between the query
and all the memory keys. Then, the memory read function is
defined as (in pseudocode):

MREAD(q) : return I(q)Mv, (7)

which returns a convex combination of all stored values,
based on the computed index. The memory write function is
similarly defined as:

MWRITE(q, v) : Mv := λI(q)v + (1− λI(q))Mv, (8)

where := is used to denote assignment, and λ is an M -sized
vector with values in [0, 1] that denotes the strength of the
write operation. If λ is closer to 1, then old values are forgot-
ten faster. λ can be set adaptively, based on how often each
value is being read. For example, it can be set closer to 1 for
values that are rarely read. The learnable parameters of this
learning mechanism consist of the parameters of I , and the
memory keys, Mk. We can initialize Mv with zeros.

Allowing the memory indexing mechanism to be learnable,
by using separate keys and values8, enables associative learn-
ing and memories, which have been shown to be important
aspects of human cognition (Fanselow and Poulos, 2005;
Ranganath and Ritchey, 2012). In psychology, associative
memory is defined as the ability to learn and remember the
relationship between unrelated items (e.g., remembering the
name of someone or the aroma of a particular perfume). This
is enabled by our indexing mechanism because it allows for
two unrelated values to have similar keys. This is mainly
because we learn keys separately from the values they corre-
spond to. Note that our proposed memory mechanism also
allows for a natural way of forgetting, where the keys of un-
used values change while learning to the point where they
may be used for storing other unrelated values instead.

We also allow the sensor and effector networks to option-
ally read from this memory. This can be important in cases
where perception depends on past experiences. Tulving et al.
(1982) provides some evidence supporting that this has been
observed to be true of human perception (this is known as
priming in psychology literature).

7Note that, the querying mechanisms are also learned, similar to
the indexing mechanism.

8As opposed to indexing by comparing queries to values as done
in memory networks.

World Simulator. An important aspect of human reasoning
is simulating the external world. Jay Wright Forrester, the fa-
ther of system dynamics, described a mental model as: “The
image of the world around us, which we carry in our head,
is just a model. Nobody in his head imagines all the world,
government or country. He has only selected concepts, and
relationships between them, and uses those to represent the
real system.” (Forrester, 1971). There is significant evidence
of the importance of simulation in neuroscience (Singer et al.,
2018). For example, Nijhawan (1994) shows that to strike a
cricket ball one must estimate its future location, rather than
where it is now. Bialek et al. (2001) show that prediction has
the fundamental theoretical advantage that a system which
parsimoniously predicts future inputs from their past, and that
generalizes well to new inputs, is likely to contain representa-
tions that reflect their underlying causes. Furthermore, they
show that much of sensory processing involves discarding
irrelevant information, such as that which is not predictive of
the future, to arrive at a representation of what is important
in the environment for guiding action. Another related line of
work is in the importance of auditory feedback (i.e., when we
hear ourselves speaking). The study of neural mechanisms
underlying audio-vocal integration has shown that auditory
feedback may be used for updating internal representations
of mappings between voice feedback and speech motor con-
trol. One of the earliest demonstrations of the role of auditory
feedback in voice control is the Lombard effect, where people
raise their voice amplitude to overcome environmental noise
(Lombard, 1911; Lane and Tranel, 1971). A related phe-
nomenon is side-tone amplification, in which people increase
their voice loudness when their self-perceived loudness is
too quiet to achieve a communication goal, and vice versa
(Lane and Tranel, 1971). Given this strong evidence from
neuroscience, we argue that in an interactive setting, where
the learning agent keeps interacting with an outside world—
which may also include other agents—being able to simulate
that world can be very important. For example, this abil-
ity could enable a search over the potential implications its
decisions will have on that outside world.

We thus propose to add a world simulator component to
our neural cognitive architecture. Formally, the simulator S
performs the following prediction:

p̂t+1 = S(pt, at+1), (9)

where p̂t+1 is a prediction estimate of pt+1. Furthermore, we
allow the world simulator to read from memory (as defined
in the previous paragraph), but not write to it. Intuitively,
the world simulator is trying to predict the next perception
input, given the current perception input and action output,
while operating only in the latent reasoning space. Similar to
the memory component, this allows the simulator to abstract
away information that is not relevant to the problems the
system is learning to solve. This type of world simulation in
a latent reasoning space is also supported by neuroscientific
evidence (e.g., Keller et al., 2012).

Recently, Ha and Schmidhuber (2018) proposed using an
RNN-based world simulator for playing games in an RL set-
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ting. They use a variational auto-encoder (VAE) to compress
the input images to a smaller vector representation and then
learn a model that simulates the environment in this vector
space. This differs from our proposal in that, we are simulat-
ing the world in the latent reasoning space that our system
learns. This should help us obtain a representation, that has
higher information content that is relevant for the reasoner.

3.4.6 GOAL CONTEXTUALIZATION

Even though deep learning methods are very effective at
learning representations for arbitrary data modalities, they
are often treated as black-box methods offering little control
over how information is shared across different tasks, and
over what exactly the networks are learning. For example,
we can rarely guarantee that a network will generalize well
to new tasks, and we often also have to keep training the
network with new problem-specific data, in order for it to
generalize better. Furthermore, deep learning approaches
often render generalizing to new tasks, for which we might
have no data at all, impossible. However, most real-world
problems can be defined in terms of simpler problems (e.g.,
translating sentences relies on first being able to translate sin-
gle words). Therefore, we argue that the ability to represent
problems in a way such that they can be transformed and
composed out of other problems, is an important aspect of
general learning and intelligence. As discussed in Section 3.2,
this motivated our recent work in contextual parameter gener-
ation (CPG) for machine translation (Platanios et al., 2018)
and question answering (Platanios* et al., 2019), and forms
the basis of contextualization. In the proposed neural cogni-
tive architecture, contextualization plays the important role
of emulating the goal priming mechanism that is inherent in
human intelligence and learning. We now describe how this
is achieved, in three parts: (i) we first describe how problems
(or goals) are specified through some language, (ii) we then
define an architectural component that compiles the problem
specification to a representation that can be used to contex-
tualize other parts of the NCA by using CPG, and (iii) we
describe how this allows for the learning system to generate
its own target problems (or goals) that it aims to learn.

As shown in Figure 2, we also allow the sensor and effector
networks to be contextualized because perception and action
are often not independent of the problem being solved. This
is motivated by the fact that priming in humans can be percep-
tual, semantic, and conceptual (Bargh and Chartrand, 2014).
From a machine learning perspective, we have also shown the
usefulness of contextualizing equivalents of perception and
action modules, when we proposed using CPG for universal
neural machine translation (Platanios et al., 2018).

Problem Specification. We first need to define a represen-
tation for problems. We propose to use a fixed language for
this representation, which could take multiple forms:

Fixed-Size Vector: Problems could be represented as
continuous-valued, fixed-size, vectors (e.g., Snell et al.,
2017; Wang et al., 2017b; Grover et al., 2018). For example,

given a fixed number of pre-specified problems the system
may learn vector embeddings to represent them. The main
disadvantage of this approach is that the vector representa-
tions of learning problems may not be interpretable.
Natural Language: This could be a problem description
that is provided as input to the system (e.g., “Identify human
faces in the input image.”). This is the approach taken, for
example, by McCann et al. (2018).
Structured Language: This could be first-order logic
(e.g., “Collect[JellyBean]∧¬Collect[Onion]”), or
more general (e.g., “If[JellyBean]Then[Collect]
Else[Avoid]”, or even a Python program).

Problem Compilation. Given a problem specification, we
need to define a compiler that takes it as input and produces
a composition of learnable functions that, when evaluated,
results in a single structured representation for the problem
(e.g., a set of vectors). This representation can then be used to
contextualize different parts of the proposed architecture (e.g.,
sensor or effector networks, or parts of the reasoner that are
discussed in the next section). Given that the representation
can potentially be a set of vectors, we could use different
parts of that structure to contextualize different parts of the
architecture. For example, text sensor networks could be
contextualized using an embedding of the language in which
the text is written. Note that contextualizing networks is
optional, as it is sometimes not necessary (e.g., the effector
network used in the bottom of Figure 2 is not contextualized).

The choice of the problem compiler is important. For fixed-
size vectors and natural language specifications the compiler
could be as simple as just a neural network (e.g., a multi-layer
perceptron, a recurrent neural network, or a Transformer net-
work). However, for other structured languages the compiler
would be something more similar to programming languages
compilers. Some examples of representations and their corre-
sponding compiled forms are shown in Table 2. Following
from the previous section examples, given a problem speci-
fication that is written as a Python program, we could also
compile it into a composition of learnable functions.

This definition of problem specifications and problem com-
pilers allows us to make the contextualization mechanism
very flexible and extensible by introducing operators that
compose compiled forms in arbitrary ways. For example, we
could have two problem specifications, each with their own
compiler, and a separate operator that allows us to merge the
two compiled forms, resulting in a single final context vector.

Problem Generation. An important aspect of human learn-
ing is that, even though nature provides us some reward
signals for our actions (e.g., eating resolves hunger), we often
“invent” new problems that we learn to solve. We could argue
that this is a way of structuring much larger overarching prob-
lems into multiple subproblems. This human behavior aspect
is very interesting and, at the same time, not really tackled at
all by current machine learning systems. Therefore, we pro-
pose to let our learning system “invent” problems on its own.
For this section, we will use a reinforcement learning setting
where a learning agent can perceive certain things about the
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Problem Compiler Examples
Specification Compiled Form Explanation
Classify[City] gClassify(cCity) Predict if the input (e.g., “Washington”) is a city.
Classify[City∧¬Person] gClassify(g∧(cCity, g¬(cPerson))) Predict if the input is a city and not a person.
Caption[Image,English] gCaption(cEnglish) Generate a short English sentence describing the

input. E.g., generate captions for images.
Translate[English,German] gTranslate(cEnglish, cGerman) Translate the input from English to German. This

is interesting because the modularity of our archi-
tecturemeans that this problem specification could
even be used to translate images containing text,
for example.

Table 2: Example uses of the problem compiler. We use c with different subscripts to denote context vectors representing primitives in
the problem specification language, and g with different subscripts to denote transformation functions for context vectors (which could be
defined as learnable neural networks, for example).

environment in which it “lives” and take actions. Oftentimes,
the agent receives a reward, but it may not know why. Thus,
in such a setting, it would make sense for the agent to try
and “invent” problems to solve, that would result in higher
collected rewards. We propose to introduce one additional
action modality that allows the agent to generate problem
specifications, that are directly fed in the problem compiler9,
and can contextualize multiple parts of the architecture.

For the fixed-size vector specification format, this could be
implemented by having the effector network output a vector
representing the problem. Perhaps more interestingly though,
we could define a structured language that only depends on
the agent’s perception and action modalities. This would
allow the agent to generate arbitrary problem specifications
that only depend on what it is able to perceive and how
it can act. For example, given a perception modality that
identifies the types of items in the environment, and an action
modality that can collect items, we could define the problem
specification language to be:

(¬)Collect[<Item>](∧(¬)Collect[<Item>])*,

where ¬ denotes the logical NOT operation, ∧ the logical
AND operation, parenthesis denote optional parts, <Item>
denotes any item type that can be sensed by the item identi-
fication perception modality, and * denotes that the term in
parenthesis preceding it can be repeated zero or more times.
Note that Collect[·] acts as a logic predicate that can be
applied on any item type. An example specification in this
language is Collect[JellyBean]∧¬Collect[Onion].

We propose to formalize this problem generation mechanism
and allow learning systems to decide on the problems they
are learning to solve.

3.4.7 LEARNING MECHANISMS

The architecture components presented so far depend on
parameters that need to be learned (e.g., the weights of neural
network layers used). Learning consists of setting the values
of these parameters so that the system as a whole can solve
the target problems. We assume that all components are
formulated as functions that are differentiable with respect

9In this case, we assume that no problem specification is pro-
vided to the agent as input.

to their parameters10. Under this assumption, we define our
learning mechanism as follows:

1. Each action modality can optionally provide a feedback
mechanism. Let us denote the output of the modality’s
effector network as a function, fθ(x), where x represents
all inputs that it depends on. In this case, f represents the
composition of all architecture modules that participated
in producing this output (i.e., this includes the reasoning
module, the goal contextualization module, and the rele-
vant perception modalities). Then, we define the feedback
mechanism as a function, h, of fθ(x) and the external envi-
ronment. For example, if fθ(x) is producing a distribution
over classes (for a multi-class classification problem), h
could be defined as:

h(fθ(x), y) = fθ(x)− y, (10)

where y represents a one-hot representation of the true
class assignment provided by the environment. The main
constraint on h is that it should produce an output that can
be multiplied with∇θfθ(x).

2. Whenever an action modality produces an output and a
corresponding feedback signal is returned from the envi-
ronment, a gradient-based parameter update is performed
along the following direction:

Dθ , h(fθ(x), E)
↓

External

∇θfθ(x)
↓

Internal

, (11)

where E represents the external environment. Note that
the first part, shown in blue, is provided from the external
environment, whereas the second part, shown in red, can
be computed internally from the learning system itself.
This separation is interesting from a human cognition per-
spective because, intuitively: (i) a human would know
how to tweak their brain to move their hand further for-
ward (internal update), while (ii) the external environment
could tell them that to achieve a particular goal they would
need to move their hand forward (external update). The
model update could be a stochastic gradient descent step:

θt+1 = θt + λtDθt , (12)

10Note that this is a very general assumption that holds for most
deep learning models, and a lot of machine learning models, more
generally.
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where λt represents the learning rate, or it could be a more
elaborate update such as when using Adam (Kingma and
Ba, 2014) or AMSGrad (Reddi et al., 2018).

Equation 11 is interesting because it can be used to unified
multiple different learning paradigms, such as supervised,
semi-supervised, unsupervised, and reinforcement learning,
under one formulation. For example:

Supervised Learning: In this case, the gradient-based
updates as computed by differentiating a loss function,
L(fθ(x), E). This fits in our formulation by defining the
feedback mechanism using the chain rule of differentiation:

h(fθ(x), E) ,
∂L(fθ(x), E)

∂fθ(x)
. (13)

For example, for L2 loss we have h(fθ(x), y) , fθ(x)− y,
and for the cross-entropy classification loss we have
h(fθ(x), y) , y/fθ(x).
Semi-Supervised Learning: Can often also be formulated
in terms of minimizing a differentiable loss function and
thus Equation 13 also applies here.
Unsupervised Learning: In this case, h(fθ(x), E) does not
depend on E at all and could be defined internally as well.
More specifically, h could be used to perform some sort of
self-reflection. This is a direction we wish to explore more
in the future, but may be outside the scope of this thesis
and is described in a bit more detail in the last section.
Reinforcement Learning: In the case of Q-learning
(Watkins and Dayan, 1992), we can have an action modality
that predicts the Q-function value (Mnih et al., 2013) and
then the learning mechanism can use a supervised learning
feedback function, h, to learn it using the rewards provided
by the environment. In the case of policy gradient methods
(Sutton et al., 2000), h can be defined as the advantage
function being used, or even some function of the advan-
tage for more complex methods (Mnih et al., 2016; Wang
et al., 2017a; Schulman et al., 2017). More interestingly,
if we want to use experience replay, as done by (Mnih
et al., 2013), we could develop a variant where: (i) the per-
ception and action modality parameters are fixed and we
are training only the problem compiler and the reasoning
modules, and (ii) the stored experiences that are replayed
are not represented in the original data space, but rather in
the more abstract and compact reasoning space. This has
the significant advantage of being able to store a lot more
experiences, as memory is typically the bottleneck when
using experience replay. Furthermore, we would only be
storing information that is relevant to reasoning.

Our learning mechanism manages all feedback mechanisms
and determines how to apply the corresponding updates and
what learning rate to use for each one. Initially, we plan to
use the same learning rate for all parameters and feedback
mechanisms with exponential decay over time. However,
our definition allows us to use potentially different learning
rates for each parameter and for each learning goal (defined
by corresponding feedback mechanisms). Next, we plan to
integrate the ideas presented in Sections 3.1 and 3.3, to this
learning mechanism. In the long term, we would like to

explore other interesting directions such as staged learning.

Staged Learning. The aforementioned reinforcement learn-
ing example on experience replay demonstrates the idea of
staged learning. In staged learning, we freeze the learning of
the perception and action modalities early on during training
(e.g., by significantly lowering the corresponding learning
rate), and then focus more on training the reasoning module.
As discussed in the beginning of Section 3, this would be
more similar to how human learning works. Assuming that
the perception and action modality networks have already
been trained using a diverse set of learning goals, freezing
them should allow for the reasoning module to tackle new
learning goals in a fixed latent space, determined by these
pretrained networks. We believe that this will result in signif-
icantly faster training times.

Mixed-Paradigm Learning. As shown earlier, our learning
mechanism is a generalization of multiple existing learning
paradigms thus allowing us to mix them together by simply
intertwining their gradient-based updates. For example, we
can take a gradient descent step towards minimizing a su-
pervised cross-entropy classification loss, and then take a
gradient descent step that improves the current Q-function
estimate, in a reinforcement learning setting. This introduces
multiple challenges that we will have to overcome, including,
but not limited to:How do we properly balance the gradient
contribution from each learning problem? How do we set the
per-learning-goal and per-parameter learning rates? How do
we make the learning mechanism scale? How do we properly
batch the training data? Other learning paradigms, such as ac-
tive learning and curriculum learning, can also be supported
by designing appropriate perception and action modalities.

3.4.8 NEVER-ENDING LEARNING

A never-ending learning system must be highly modular and
allow for the addition and removal of modules without requir-
ing a complete retraining from scratch. For this reason, we
plan to implement the proposed architecture in a highly mod-
ular manner, with each module being completely independent
of the rest and having a fixed, well-defined, and generic inter-
face. This will allow for adding and removing perception and
action modalities and for extending the problem specifica-
tion language, without requiring a complete retraining from
scratch every time such a modification is made. Furthermore,
each module will be solely responsible for persisting its state,
so that we can keep extending the architecture and avoiding
training restarts, as much as possible. Our goal by the end
of this project is for the proposed architecture to have been
training for the duration of this thesis, with some modules
having been trained for a year and some newer ones only
for a few days. This will allow us to provide convincing
evidence for its never-ending learning capabilities. Moreover,
unlike NELL (Mitchell et al., 2018), we aim for this system
to fully avoid complete training restarts throughout its life-
time. Finally, we want to explore directions where the latent
reasoning representation is also extensible without requiring
complete training restarts. This is a long term goal that goes
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beyond the scope of this thesis.

4 Evaluation
In order to test our hypothesis from Section 1, we propose
to perform multiple case studies. Some of these case studies
are performed over a simulated world that we have designed
and built, called the Jelly-Bean World (JBW)11. We designed
this world specifically for enabling us to test the properties of
never-ending learning systems, that are otherwise hard and
very expensive to evaluate using real-world datasets. In the
following section we describe this simulated world, and then
we provide a list of the proposed case studies.

4.1 Jelly Bean World (JBW)

The JBW offers a controlled environment where a learning
agent “lives”, and which defines the problems that the agent
can solve and the reward it obtains for solving each problem.
The JBW is a procedurally generated two-dimensional grid
world, where items of various types can be placed on each
grid cell. An example illustration is shown in Figure 3. In this
world, time is discrete and measured in terms of simulation
steps. Each item has a color and a scent, each represented by
a fixed-size continuous-valued vector. The learning agents
have a visual field range within which they can see the colors
of the items in each cell. They can also smell the scent of their
current cell. The scent of each cell is computed by simulating
the diffusion of scent across all items in the world12. Items
are also allowed to have other properties. For example, walls
can block agent movement and onions may tend to cluster
together. The JBW has the following desirable properties:

Multiple Problems: We can define multiple learning prob-
lems. For example, we can have the agent learn to collect
jelly beans and avoid onions. This results in a reinforce-
ment learning setting where the agent receives sparse re-
wards. We can then have the same agent learn to predict the
color and scent of each item, and also classify which item a
specific color or scent corresponds to. These problems can
be learned in a supervised fashion, using a differentiable
loss function defined over the items the agents has “stepped
over” so far. When combined with the original RL problem,
they may help reduce its sample complexity.
Continual Learning: In the JBW, the learning agent never
“dies”. It is instead learning continually, in a never-ending
fashion. The world is generated in a procedural manner,
and thus, no matter how far the agent decides to explore,
the JBW imposes no limits. This allows us to observe how
fast the agent learns to solve different problems, and to also
observe how its learning rate changes as time progresses
and the agent learns to solve other problems. In fact, these
conditions are also closer to human learning, in that it is
also never-ending and of a non-episodic nature.
Multiple Modalities: There exist two perception modalities,
scent and vision, which have very different characteristics.

11
https://github.com/eaplatanios/nel_framework

12Scent diffusion means that strength of an item’s scent decays
with distance from the item.
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Figure 3: Jelly-Bean World example.

Vision has a limited range, but very high precision, mean-
ing that the agent knows exactly what color each grid cell
has, within its visual field. On the other hand, scent has in-
finite range (through diffusion it can propagate to very long
distances), but very low precision (it can be very hard to de-
compose the scent at the current grid cell into all the items
that contribute to it, and their distance from the agent). At
the same time, knowing the scent of an item and computing
the difference in the agent’s perceived scent between one
cell and another, can provide a lot of information about
which direction an item’s scent is coming from.
Ever-Changing Learning Problems: The mechanics of the
JBW allow us to construct conditions for ever-evolving
learning problems. For example, let us assume that
some of the items are notes that contain learning prob-
lem descriptions, such as Collect[JellyBean]→ 10 ∧
Collect[Onion]→ −10. This describes an item collec-
tion and avoidance problem, along with associated rewards.
Such notes can be spread around the world and, until the
agent finds them, he cannot tackle the learning problems
they describe. Some of these notes may contain recipes
for building new items, that give the agent unique abilities
(e.g., binoculars to extend its visual range). Furthermore,
some items may be invisible to the agent (both in terms of
color and scent) when it starts learning. For example, some
of the color vector dimensions may only become unmasked
if the agent manages to obtain a specific item, such as an
X-ray machine. This creates conditions similar to human
learning, where learning problems exist abundantly in the
world (and may also be generated in a procedural manner),
but are not available until certain other problems are solved.

In JBW, we can also control for the relationship between
learning problem difficulty versus reward. This can create
interesting situations where solving more difficult problems
does not necessarily imply collecting a higher reward. The
JBW can thus get arbitrarily complex and difficult, while
remaining controllable. It therefore allows us to test several
aspects of our hypothesis, as well as test whether the various
parts of the proposed neural cognitive architecture are benefi-
cial to learning, or not (e.g., we can design problems where
memory is necessary, such as ones that require counting
items). We propose to use simple metrics to measure learning
performance in the JBW, such as the performance for each
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problem and across simulation steps. Performance could be
measured in terms of a metric computed over a validation set,
or simply in terms of cumulative reward collected, and its rate
of change. Furthermore, our JBW simulator already supports
multiple agents interacting with the same grid-world and with
each other, and thus also allows us to conduct multi-agent
experiments (e.g., test for agent communication).

4.2 Case Studies
We propose to perform the following case studies:

JBW #1: The agent gets a positive reward for col-
lecting some items and a negative rewards for collect-
ing some other items. We will test performance when
only being provided a single problem specification (e.g.,
Collect[JellyBean]∧¬Collect[Onion]), and when
also trying to classify or recognize items based on their
color or scent. The latter case should help us test whether
the mixed learning paradigm scenario results in better learn-
ing performance for our architecture.
JBW #2: Same as JBW #1, except that we let the agent
generate the problem specification, rather than having it be
provided as input from the environment. This should help
us test the problem generation and goal contextualization
capabilities of the proposed architecture.
JBW #3: Design some tasks in the JBW that require the
use of memory (e.g., counting items) and world simulation,
so that we can test the relevant parts of the reasoner.
Atari Games: Learn to play multiple Atari games using a
single learning system. This should helps us test whether
modularizing and sharing perception and action modali-
ties across games can help reduce the sample complexity
of learning to play a new game, after having learned to
play some others. In this case, the problem specification
language will consist simply of an Atari game identifier.
NLP: Tackle multiple natural language processing (NLP)
problems using a single NCA learning system. An exam-
ple would be to try and outperform BERT in the problems
Devlin et al. (2018) tackle, or to compete in the decaNLP
challenge (McCann et al., 2018). It will also be interesting
to explore multi-modal NLP problems such as visual ques-
tion answering and problems involving knowledge graphs.
This will allows us to test for multi-modal learning aspects.

5 Proposed Timeline
We propose to structure the proposed thesis work in four main
chapters, as discussed in Section 3:

1. Learning from Multiple Noisy Labels [DONE]: Pub-
lished in (Platanios et al., 2014; 2016; 2017; 2019).

2. Contextual Parameter Generation [01/18-09/19]:
We have already performed extensive empirical evalu-
ations of the core idea behind contextual parameter gener-
ation (e.g., Platanios et al., 2018; Platanios* et al., 2019).
In the next couple of months we aim to obtain a theoreti-
cal understanding of when and why contextual parameter
generation works and of the limitations it addresses.

3. Self-Reflection [07/19-12/19]: We plan to develop
and evaluate the differentiable intrinsic reward mechanism

that was briefly discussed in Section 3.3.
4. Unified Architecture [09/19-05/20]: We plan to

work towards developing a unified architecture as pre-
sented in Section 3.4, in the following order:

i. Goal Contextualization: Can we use contextual pa-
rameter generation to achieve the equivalent of goal
priming in a machine learning system? We have al-
ready shown that we can do that in a couple specific
applications (Platanios et al., 2018; Platanios* et al.,
2019). However, it will be challenging to extend
that to a multi-problem setting with a problem spec-
ification language handling structured information
sharing across the different problems.

ii. Module Sharing: Can we effectively share the same
perception, reasoning, and action modules across
multiple problems? There has been some early work
in this direction (e.g., Kaiser et al., 2017), but perfor-
mance generally drops for problems for which we
have a lot of data available. It will be challenging to
overcome this issue, but succeeding would pave the
way for more general learning systems.

iii. Unified Learning Paradigm: Can we design a uni-
fied learning paradigm that encompasses supervised,
semi-supervised, unsupervised, and reinforcement
learning, and can be successfully used to learn in
mixed-paradigm settings? We proposed a first step
in this direction in Section 3.4.7, but it may be chal-
lenging to successfully deploy such a system in real-
world applications. If successful, this could poten-
tially lead to a merge between some seemingly dis-
tinct ideas about machine learning.

iv. Goal Generation: Can we design and implement a
system that can successfully generate its own learn-
ing goals and let them guide its learning process?
How do we evaluate such a capability?

v. Self-Reflection: Can the proposed neural cognitive
architecture achieve self-reflection capabilities? Self-
reflection capabilities could form a basis for unsuper-
vised learning and could potentially be achieved by
designing appropriate self-sensors and self-effectors
(i.e., designing appropriate perception and action
modalities). In fact, we hope that we may be able
to model the learning mechanism itself as the result
of the interaction between certain self-sensors and
self-effectors. Given our framing of the learning
mechanism using Equation 11, we believe we may
be able to model self-reflection by using the internal
component of the feedback direction, and having the
feedback mechanism be provided by self-sensors,
rather than by the external environment.

Points (iii), (iv), and (v) above, are long-term goals that
may not be finished during the indicated time frame. How-
ever, we hope to make some first steps before defending
this thesis in May 2020.
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